Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Parábola

De Wikillerato

(Redirigido desde Parabola)

Tabla de contenidos

[ocultar]


Definición


Llamamos lugar geometrico al conjunto de puntos que satisfacen una determinada propiedad.


Llamamos parábola al lugar geométrico de los puntos de un plano que equidistan de un punto fijo   
F
  y de una recta fija   
d
.


Veamos cuales son los elementos de la parábola:


Imagen:parabola.png


1. El punto   
F
  se denomina foco y la recta   
d
  es la directriz de la parábola.


2. La recta que pasa por el foco y es perpendicular a la directriz se llama eje de la parábola. En la figura de arriba el eje de la parábola coincide con el eje   
</p>
<pre>Y
</pre>
<p> .


3. El punto en el que el eje corta a la parábola recibe el nombre de vértice. (   
V
  en la figura de arriba )


4. Se denomina parámetro,   
p
, a la distancia del foco a la directriz.


Ecuación


La condición:


"los puntos de la parábola equidistan de   
F
  y de   
d
."


se puede expresar matematicamente de la siguiente forma:



\sqrt
{
</p>
<pre> x^2 \, + \, 
 \left(
   \, y \, - \, \frac{p}{2} \,
 \right)
 ^2 
</pre>
<p>}
\, = \, y \, + \, \frac{p}{2}


donde el miembro de la izquierda es la distancia de un punto   
P \, = \,
\left(
</p>
<pre>  \, x, \, y \,
</pre>
<p>\right)
  a   
F
  y el miembro de la derecha es la distancia de   
P
  a   
d
.


Elevando al cuadrado y agrupando terminos semejantes, obtenemos:



x^ 2 \, = \, 4py\



Así, podemos generalizar esta ecuación para parábolas no solo verticales sino también horizontales y cuyo vertice no se encuentre en el origen (0,0). La ecuación para una parábola vertical es 
\left(\, x\, -\, h\, )\,^2 \, =\, 4p\, (\, y\, -\, k\,)
Esta parábola tiene su vertice en el punto (h,k) y es concava hacia arriba si p>0 y es hacia abajo si p<0.
Para obtener la ecuación de una parabola horizontal, como es de esperarse, se intercambian en la ecuación anterior los lugares de "x" y de "y". Es como si giraramos el plano cartesiano 90º. De esta forma la parabola abre hacia la derecha si p>0 y hacia la izquierda si p<0.


Ejemplo



y^2 \, = \, 4x


es la ecuación de una parábola cuyo eje es el eje   
X
  y cuya directriz es la recta de ecuación:   
x \, = \, -1
. Su foco es el punto   
F \, = \,
\left(
</p>
<pre>  \, 1, \, 0 \,
</pre>
<p>\right)
.



Referencias

  1. Cónicas: Ecuaciones de la hipérbola y la parábola, Pilar Ferrero Casado. Matemáticas: ESO, Bachillerato y Selectividad.
   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.