Atomísmo eléctrico
De Wikillerato
Línea 55: | Línea 55: | ||
Expresada de este modo la ley de faraday dice que una carga eléctrica F es transportada al electrodo en una cubeta electrolítica cuando un mol de un ion cargado monavalentemente con masa <math>x</math> y carga elementaria <math>e>/math> ha sido depositado en el electrodo. Por lo tanto pesando el electrodo después de que una carga F se haya transferido producirá <math>N_A</math>. Así el cociente entre la cantidad de carga de un faraday (F) y el número de Avogadro nos daría la cantidad de electricidad transportada por cada átomo o radical monovalente.Ya que el faraday <math>F</math> se podía medir con bastante precisión, <math>N_A</math> o <math>e</math> podía ser determinado si el otro era conocido. Faraday era consciente de ello pero no pudo determinar ninguna de esas dos cantidades. No obstante, esta ley electrolítica ofrecía una prueba bastante concluyente de la existencia de las moléculas químicas propuestas por Avogadro y que estas constan de átomos. Demostraba además que la carga está cuantizada porque a los electrodos solo se transfieren números enteros de carga. Apuntaba también la posibilidad de que los átomos estaban formados por elementos constituyentes cargados positivamente y negativamente, aunque en ese momento la entidad de los mismos permanecía desconocida. Parecía así que la carga eléctrica al igual que la idea atómica de la constitución de la materia parecia no ser continua sino constituida de partículas portadoras de una cantidad discreta de carga eléctrica. | Expresada de este modo la ley de faraday dice que una carga eléctrica F es transportada al electrodo en una cubeta electrolítica cuando un mol de un ion cargado monavalentemente con masa <math>x</math> y carga elementaria <math>e>/math> ha sido depositado en el electrodo. Por lo tanto pesando el electrodo después de que una carga F se haya transferido producirá <math>N_A</math>. Así el cociente entre la cantidad de carga de un faraday (F) y el número de Avogadro nos daría la cantidad de electricidad transportada por cada átomo o radical monovalente.Ya que el faraday <math>F</math> se podía medir con bastante precisión, <math>N_A</math> o <math>e</math> podía ser determinado si el otro era conocido. Faraday era consciente de ello pero no pudo determinar ninguna de esas dos cantidades. No obstante, esta ley electrolítica ofrecía una prueba bastante concluyente de la existencia de las moléculas químicas propuestas por Avogadro y que estas constan de átomos. Demostraba además que la carga está cuantizada porque a los electrodos solo se transfieren números enteros de carga. Apuntaba también la posibilidad de que los átomos estaban formados por elementos constituyentes cargados positivamente y negativamente, aunque en ese momento la entidad de los mismos permanecía desconocida. Parecía así que la carga eléctrica al igual que la idea atómica de la constitución de la materia parecia no ser continua sino constituida de partículas portadoras de una cantidad discreta de carga eléctrica. | ||
- | Considerando las experiencias de Faraday ,el científico irlandés George Johnstone Stoney (1826-1911) sugirió en una comunicación publicada en 1891 el nombre de electrón (abreviadamente <math>e</math>) para la “unidad natural de la electricidad” o sea la mínima cantidad de electricidad (o cantidad de carga), que debe pasar a través de una solución para poner en libertad, en uno de sus electrodos, un átomo de hidrógeno o un átomo de cualquier sustancia simple formada por un elemento monovalente. En esa comunicación decía Johnstone ...”por lo tanto pueden existir varias de estas cargas en un átomo químico, y al parecer, hay por lo menos dos en cada átomo. Estas cargas, que serán conviene llamar “electrones”, no pueden ser sacadas del átomo, sino que se disimulan cuando los átomos se unen químicamente...” (b) . Además usando una estima obtenida para <math>N_A</math> a partir de la [[teoría cinética de los gases]] G.J. Stoney pudo computar utilizando la ecuación el valor de e de aproximadamente <math>10^{-20} C. Después que J.J. Thomson descubriera la partícula (“corpúsculos” en la terminología original de Thomson) que lleva o porta la unidad fundamental de carga, el nombre de electrón fue transferido por el gran físico holandés Hendrik A. Lorentz (1853 – 1928) desde la cantidad de carga para desiganar con el nombre de '''electrones''' a los corpúsculos de Thomson. | + | Considerando las experiencias de Faraday ,el científico irlandés George Johnstone Stoney (1826-1911) sugirió en una comunicación publicada en 1891 el nombre de electrón (abreviadamente <math>e</math>) para la “unidad natural de la electricidad” o sea la mínima cantidad de electricidad (o cantidad de carga), que debe pasar a través de una solución para poner en libertad, en uno de sus electrodos, un átomo de hidrógeno o un átomo de cualquier sustancia simple formada por un elemento monovalente. En esa comunicación decía Johnstone ...”por lo tanto pueden existir varias de estas cargas en un átomo químico, y al parecer, hay por lo menos dos en cada átomo. Estas cargas, que serán conviene llamar “electrones”, no pueden ser sacadas del átomo, sino que se disimulan cuando los átomos se unen químicamente...” (b) . Además usando una estima obtenida para <math>N_A</math> a partir de la [[teoría cinética de los gases]] G.J. Stoney pudo computar utilizando la ecuación el valor de e de aproximadamente <math>10^{-20} C</math>. Después de que J. J. Thomson descubriera la partícula (“corpúsculos” en la terminología original de Thomson) que lleva o porta la unidad fundamental de carga, el nombre de electrón fue transferido por el gran físico holandés Hendrik A. Lorentz (1853 – 1928) desde la cantidad de carga para desiganar con el nombre de '''electrones''' a los corpúsculos de Thomson. |
<h4>Tubos de descargas: rayos catódicos y canales</h4> | <h4>Tubos de descargas: rayos catódicos y canales</h4> | ||
Línea 67: | Línea 67: | ||
Roberto Andrés Millikan. Electrones, protones, fotones, neutrones y Rayos cósmicos. Espasa-Calpe Argentina S.A, 1946. Un libro clásico escrito por unos de los científicos que determinó por primera vez con su famoso experimento de la gota una relación carga-masa (e/m) precisa para el electrón. | Roberto Andrés Millikan. Electrones, protones, fotones, neutrones y Rayos cósmicos. Espasa-Calpe Argentina S.A, 1946. Un libro clásico escrito por unos de los científicos que determinó por primera vez con su famoso experimento de la gota una relación carga-masa (e/m) precisa para el electrón. | ||
- | <h4 | + | <h4>Enlaces externos</h4> |
[[Categoría: Química]] | [[Categoría: Química]] |
Revisión de 19:34 4 dic 2008
Tabla de contenidos |
Atomismo eléctrico
Antecedentes históricos, buscando el mínimo de carga eléctrica
Los fenómenos eléctricos atrajeron la atención de los filósofos griegos, se cuenta que Tales de Mileto, que vivio en esa ciudad Jónica en Asia menor, actual Turquía, en el siglo VI a. C. (considerado el primer filósofo griego), encontró que al frotar el ámbar, este podía atraer, pequeños trozos de objetos livianos hechos de paja, papel y otras sustancias. La palabra griega de ámbar es electrón, razón por la cual el ingles Willian Gilbert (1544-1603), un médico de la corte isabelina, hombre de gran genio y visión descubrió que una varilla de vidrio y otros veinte cuerpos, al ser frotados con seda actúan en forma similar al ámbar de los griegos, decidió describir el fenómeno diciendo que la varilla de vidrio se había electrificado (o sea “ambarizado”), o como lo expresamos ahora había adquirido una carga eléctrica. En su tratado sobre electricidad y magnetismo De magnete propuso llamar sustancias eléctricas a aquellas que tenían la propiedad del ámbar, electricidad a dicha propiedad y eléctrica al fenómeno de atracción.
El físico francés Charles F. Du Fay (1698-1739) , descubrió 1732 que el lacre, la ser frotado con piel de gato, se electrizaba también; pero a diferencia de la varilla de vidrio electrizada atraía fuertemente cualquier cuerpo electrizado que hubiese sido repelido por el vidrio, en tanto que rechazaba cualquier cuerpo electrizado que fuera atraído por el vidrio. Así, llevando a cabo experimentos de electrificación con diferentes sustancias llego al descubrimiento de que hay dos tipos de electricidad: la producida por el ámbar, el lacre, la seda, hilo, papel, o la vulcanita y otras sustancias resinosas al ser frotadas, y la producida frotando sustancias vítreas como el cristal, la mica, piedras preciosas, lana y pelo de animales. A parir de estos resultados Du Fay reconoció dos "géneros" de electricidad que llamó resinosa y vítrea, y estableció que dos cuerpos cargados eléctricamente de igual manera (e.g vítrea) se repelen mutuamente mientras que los de género distinto se atraen.
El científico y estadista americano Benjamín Franklin (1706-1790), famoso por ser el inventor del pararayos, alrededor de 1747 reconoció también esas dos clases de electricidad e introdujo los término positiva y negativa para distinguirlas. Propuso la teoría de que la electricidad vítrea era la única clase de fluido o “fuego” eléctrico y que los diferentes géneros de electricidad correspondían al exceso o a la falta de este fluido imponderable. Así pues, para él el cuerpo cargado con un exceso de electricidad vítrea (como una varilla de cristal frotado con tela de seda) la llamaba cuerpo electrificado positivamente mientras que un cuerpo con falta de ella (como una varilla de lacre o caucho frotada con piel de gato) era un cuerpo electrificado negativamente. Franklin supuso también que cuando dos cuerpos uno de los cuales tiene un exceso y el otro una deficiencia de fluido eléctrico (el vítreo) se juntan o ponen en contacto, la corriente eléctrica debe fluir desde el primer cuerpo donde está en exceso al segundo donde falta. En aquel tiempo Franklin no sabia por ejemplo si el fluido eléctrico había sido transferido después de la frotación desde la tela de seda a la varilla de vidreo o a la inversa. No obstante, Franklin asumió de manera arbitraria que la varilla de vidrio al ser frotada adquiere parte del fluido eléctrico (cargandose positivamente con ello) que es transferido desde la tela de seda por el frotamiento, la cual tenía inicialmente un exceso de fluido eléctrico, quedando así la tela después de la transferencia con una deficiencia de fluido eléctrico y por lo tanto estando por ello cargada negativamente, suponiendo además que la carga positiva recibida por el vidrio era igual a la perdida por la tela de seda y en general Franklin asumía que las cargas positivas y negativa aparecen siempre simultáneamente y en cantidades exactamente iguales.
Ahora conocemos de hecho que Franklin estaba equivocado a este respecto, cuando la varilla de vidrio es frotada con seda partículas negativamente cargadas (electrones), son transferidos desde la varilla a la tela de seda. Sin embargo, las ideas de Franklin han llegado a la terminología moderna en la cual la corriente eléctrica se representa como “fluyendo” del electrodo positivo (ánodo) al negativo (cátodo).
El físico Robert Simmer (1707-1763) siguiendo la estela de las ideas del científico alemán Franz T. Aepenius (1724-1802) en 1759 defendió a diferencia de la teoría de fluido eléctrico único de Franklin la existencia de dos fluidos eléctricos diferentes como responsables de los dos tipos de electricidades resinosa y vítrea. Prefiriendo con ello suponer que la materia en estado neutro no muestra propiedades eléctricas por contener como componentes cantidades iguales de electricidad positiva y negativa. Desde ese punto de vista un cuerpo cargado positivamente es aquel que tiene mayor cantidad de fluido positivo que negativo y un cuerpo cargado negativamente es aquel en el cual el fluido negativo está en exceso.
Franklin propuso también, “La materia eléctrica se halla compuesta de partículas extremadamente sutiles dado que pueden penetrar la materia común, aun la más densa, con tal libertad y facilidad como para no encontrar ninguna resistencia apreciable ...” en esa fecha la teoría atómica de la electricidad era lo que la teoría atómica de la materia fue para Demócrito, pura especulación (a).
Aunque hoy sabemos que hay tanto partículas cargadas negativamente (electrones) como positivamente (protones), que portan la cantidad minina de carga eléctrica. El camino teórico y experimental que condujo al descubrimento de esas partículas, así como de la cuantización de la carga eléctrica ocupó a los físicos y químicos en los años finales del siglo XIX y primeros años del XX.
Electricidad y química: Electroquímica
La naturaleza eléctrica de las sustancias químicas fue advertida inmediatamente después de que en 1791 el médico, fisiólogo y químico italiano Luigi Galvani (1737-1798) comprobara el efecto de la electricidad sobre los nervios y los músculos de una anca de rana, por el físico también italiano Alessandro Volta (1745- 1827, amigo personal de Galvani) al construir el primer generador eléctrico, a partir de una batería de pilas eléctricas o pilas de Volta, (construidas con una pila de discos de metal alternados de cobre y de hierro o cinc separados en capas con paños impregnados con agua salada) , pues con ello encontró que las reacciones químicas podían producir electricidad. El fenómeno contrario que una corriente eléctrica podía producir transformaciones (reacciones) químicas fue descubierto por el químico inglés Sir Humphry Davy (1778-1829), el 6 de Octubre de 1807 al hacer pasar una corriente a través de potasa fundida (carbonato cálcico) observó que se liberaban pequeños glóbulos de un metal muy activo que llamó potasio, una semana después Davy aisló el sodio a partir de esa misma solución. Con este método electrolítico descubrió otros metales a partir de sales fundidas de sus óxidos: magnesio de la magnesia, estroncio de la estroncita, bario de la baritina, calcio de la calcita. Identificó también al cloro como un elemento, a partir del ácido clorhídrico.
El estudio de estos procesos electrolíticos produjeron el primer indicio experimental a favor de una idea cuantizada (discreta) de la carga eléctrica (como hemos visto anteriormente propuesta de manera especulativa por Benjamin Franklin) surgió con el trabajo experimental del protegido y ayudante de Davy, el gran científico Michel Faraday (1791-1867) que llevo a cabo (en los primeros años del siglo XIX) sobre la conducción de la electricidad en líquidos. Por otra parte, Faraday acuñó los términos electrolisis, para indicar el proceso de ruptura (del griego lisis, romper) de las moléculas por la electricidad. Electrolito a los compuestos o soluciones capaces de transportar una corriente eléctrica. A las placas o varillas del metal introducidas en la sustancia fundida o solución (generalmente acuosas) de ciertos compuestos principalmente inorgánicos recibieron el nombre de electrodos; al el electrodo que llevaba una carga positiva le llamó ánodo, el que llevaba una carga negativa era el cátodo. Algunos de estos términos le fueron sugeridos por su amigo William Whewell (1794–1866).Su propuesta de la ley de la electrólisis, fue de gran importancia para entender la naturaleza de las fuerzas eléctrica, y los constituyentes eléctricos del átomo.
En sus experimentos Faraday hacia pasar una corriente eléctrica a través de soluciones líquidas ligeramente conductoras y observaba la subsecuente liberación de los componentes de la solución en los electrodos de su cubeta de electrólisis. "En 1833, Faraday descubrió que el pasaje de una cantidad de electricidad dada a través de una solución que contiene un compuesto de hidrógeno, por ejemplo, produce siempre la aparición, en el electrodo negativo (cátodo), de igual cantidad de gas de hidrógeno, independientemente de cual sea el compuesto de hidrógeno que haya sido disuelto e independientemente también de la concentración de la solución, y que además la cantidad de electricidad necesaria para producir un gramo de hidrógeno deposita siempre, en una solución que contiene plata exactamente 107.5 g de plata. Esto significa que dado que el peso del átomo de plata es exactamente 107.5 veces el peso del átomo de hidrógeno, el peso de hidrógeno y el átomo de plata se encuentran asociados en las soluciones exactamente a la misma cantidad de electricidad. Faraday descubrió así que de ese modo todos los átomos que son monovalentes en Química, es to es, que se combina con un átomo de hidrógeno (e.g. cloruro de hidrógeno) llevan precisamente la misma cantidad de electricidad , y que todo los átomos Bivalente se llevan el doble de esta cantidad, y que en general, la valencia, en Química es siempre exactamente proporcional a la cantidad de electricidad llevada por el átomo en cuestión" (b).
Faraday, imaginó que esta carga estaba llevada por el átomo o en algunos casos, por grupos de átomos, y llamó al grupo con su carga un ion, esto es “un viajero” (en griego ion significa viajero). Los iones que viajaban al ánodo eran aniones, los que viajaban al cátodo cationes. A través de la solución pasa carga en forma de iones que poseen defecto o exceso de uno (iones monovalentes) o más electrones (inoes bivalente, trivalentes, etc...). Bajo la influencia de la batería estos iones se mueven hacia el ánodo o hacia el cátodo donde respectivamente ganan o pierden electrones y son liberados como átomos neutros.
Mediante medidas cuantitativas precisas, Faraday descubrió que una misma cantidad de electricidad, F (1 faraday, llamado así en su honor) igual a aproximadamente 96.500 Culombios (C) depositaban siempre en el electrodo una masa (en gramos) exactamente igual a un mol de un ion monovalente. Por ejemplo al pasar 1F a través de una disolución acuosa de sal común, cloruro de sodio (NaCl) , se observa que 23 g de Na (la masa molar del sodio) aparecen en el cátodo y 35.5 g de cloro en el ánodo (la masa molar del cloro), es decir se depositan un mol de cada elemento, porque ambos son monovalentes. Por otra parte Faraday pudo comprobar que la masa de un elemento liberado en un electrodo es directamente proporcional a la carga, así al duplicar la carga se duplica la masa del elemento depositado, y que para la misma cantidad de electricidad la masa de los diferentes productos formados son proporcionales a los respectivos equivalentes químicos, con un equivalente siendo igual a la razón de la masa molecular a la valencia (V) del átomo o ion que participa en la reacción). De forma matemática:
)
donde
m, es la masa de la sustancia depositada en un electrodo
Q , es la carga eléctrica total que pasa a través de la sustancia
F , es la constante de Faraday = 96.485,3383(83) C mol-1
M , es la masa molar de la sustancia
V , es el número de valencia de los iones de la sustancia (o electrones transferidos por ion)
Esto es, por ejemplo para iones de valencia 2 (bivalentes), tales como el or </math>{(SO_4)^{-2}</math> se requieren 2 faradys para descomponer un mol de sulfato de cobre (, depositándose por lo tanto ½ mol de los elementos por faraday.
Dado que la masa de un mol se define como el conjunto de átomos cuya masa total en gramos, es numéricamente igual a la masa atómica de dicho elemento, es precisamente igual al número de Avogadro , por lo que es razonable asumir que cada ion monovalente contiene contiene la misma carga e. Lo que permite otra forma de expresar la ley de de la electrólisis de Faraday:
donde
Expresada de este modo la ley de faraday dice que una carga eléctrica F es transportada al electrodo en una cubeta electrolítica cuando un mol de un ion cargado monavalentemente con masa y carga elementaria [Unparseable or potentially dangerous latex formula. Error 3 ]. Así el cociente entre la cantidad de carga de un faraday (F) y el número de Avogadro nos daría la cantidad de electricidad transportada por cada átomo o radical monovalente.Ya que el faraday se podía medir con bastante precisión, o podía ser determinado si el otro era conocido. Faraday era consciente de ello pero no pudo determinar ninguna de esas dos cantidades. No obstante, esta ley electrolítica ofrecía una prueba bastante concluyente de la existencia de las moléculas químicas propuestas por Avogadro y que estas constan de átomos. Demostraba además que la carga está cuantizada porque a los electrodos solo se transfieren números enteros de carga. Apuntaba también la posibilidad de que los átomos estaban formados por elementos constituyentes cargados positivamente y negativamente, aunque en ese momento la entidad de los mismos permanecía desconocida. Parecía así que la carga eléctrica al igual que la idea atómica de la constitución de la materia parecia no ser continua sino constituida de partículas portadoras de una cantidad discreta de carga eléctrica.
Considerando las experiencias de Faraday ,el científico irlandés George Johnstone Stoney (1826-1911) sugirió en una comunicación publicada en 1891 el nombre de electrón (abreviadamente ) para la “unidad natural de la electricidad” o sea la mínima cantidad de electricidad (o cantidad de carga), que debe pasar a través de una solución para poner en libertad, en uno de sus electrodos, un átomo de hidrógeno o un átomo de cualquier sustancia simple formada por un elemento monovalente. En esa comunicación decía Johnstone ...”por lo tanto pueden existir varias de estas cargas en un átomo químico, y al parecer, hay por lo menos dos en cada átomo. Estas cargas, que serán conviene llamar “electrones”, no pueden ser sacadas del átomo, sino que se disimulan cuando los átomos se unen químicamente...” (b) . Además usando una estima obtenida para a partir de la teoría cinética de los gases G.J. Stoney pudo computar utilizando la ecuación el valor de e de aproximadamente . Después de que J. J. Thomson descubriera la partícula (“corpúsculos” en la terminología original de Thomson) que lleva o porta la unidad fundamental de carga, el nombre de electrón fue transferido por el gran físico holandés Hendrik A. Lorentz (1853 – 1928) desde la cantidad de carga para desiganar con el nombre de electrones a los corpúsculos de Thomson.
Tubos de descargas: rayos catódicos y canales
Modelo atómico de Thomson
Referencias>
Bibliografía George Gamov. Biografía de la Física. Alianza Editorial.1980
Libros clásicos: Roberto Andrés Millikan. Electrones, protones, fotones, neutrones y Rayos cósmicos. Espasa-Calpe Argentina S.A, 1946. Un libro clásico escrito por unos de los científicos que determinó por primera vez con su famoso experimento de la gota una relación carga-masa (e/m) precisa para el electrón.