Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Conceptos básicos: espacios vectoriales

De Wikillerato

(Diferencias entre revisiones)
(Ejemplo)
m (Revertidas las ediciones realizadas por 201.222.197.99 (Talk); a la última edición de Jaimecarrion)
Línea 398: Línea 398:
<br/>
<br/>
-
El conjuntvo &nbsp;
+
El conjunto &nbsp;
<math>
<math>
R^3
R^3

Revisión de 07:49 20 oct 2009

Tabla de contenidos

Vectores en el plano

Un vector es cualquier cosa para el que tenga definida una suma (se pueda sumar/ restar ) exista neutro y se pueda multiplicar por números. Las flechas en el plano con origen fijo se pueden sumar (paralelogramo) y se pueden multiplicar por numeros sin mas que repetir la suma.[cita requerida]


En el plano, una flecha   
\stackrel{\longrightarrow}{PQ}
  es un segmento orientado de origen   
P
  y extremo   
Q
,   que tiene las siguientes caracteristicas:


  Módulo: longitud del segmento   
PQ
.


  Dirección: la de la recta que lo contiene y todas sus paralelas.


  Sentido: el que va del origen al extremo.


Los vectores   
\stackrel{\longrightarrow}{PQ}
  y   
\stackrel{\longrightarrow}{QP}
  tienen el mismo módulo y la misma dirección, pero sentido contrario. Los vectores   
\stackrel{\longrightarrow}{PQ}
  y   
\stackrel{\longrightarrow}{QP}
  son opuestos.


El conjunto de todos los vectores fijos del mismo módulo, dirección y sentido forma lo que se denomina un vector libre. Una propiedad importante que cumplen los vectores libres es que si   
\vec{u}
  es un vector libre y   
O
  es un punto del plano, existe un único punto   
P
  tal que   
\vec{u} \, = \, \stackrel{\longrightarrow}{OP}
.


Componentes de un vector

Un sistema de referencia esta formado por dos rectas  OX y  OY , llamadas ejes de coordenadas que se cortan en un punto  O , origen de coordenadas, y una unidad de medida en cada eje. Cuando las dos rectas son perpendiculares el sistema es ortogonal y cuando, además, las dos unidades de medida son iguales a uno, el sistema es ortonormal.

Para representar un punto  P del plano en un sistema de coordenadas cartesiano se trazan desde  P perpendiculares a los ejes, obteniendo  P_1 y  P_2

Si la distancia de  P_1 a  O es  x_1 , y la de  P_2 a  O es  y_1 , entonces  x_1 e  y_1 reciben el nombre de coordenadas del punto  P

Se escribe  P \, = \, \left( \, x_1, \, y_1 \,\right) , siendo  x_1 la abcisa e  y_1 la ordenada.

Conocidas las coordenadas del origen  A \, = \,\left( \, x_1, \, y_1 \,\right) y del extremo B \, = \,\left( \, x_2, \, y_2 \,\right) de un vector fijo  \stackrel{\longrightarrow}{AB} , se puede determinar las componentes del vector restando a las coordenadas del extremo las del origen:

 \stackrel { \longrightarrow} {AB} \, = \, \left( \, x_2 \, - \, x_1, \, y_2 \, - \, y_1 \,\right)

Suma de vectores


Sean   
\vec{\mathbf{u}}
  y   
\vec{\mathbf{v}}
  dos vectores libres, se define el vector suma   
\vec{\mathbf{u}} \, + \, \vec{\mathbf{v}}
  como otro vector obtenido de la siguiente forma:



1. Se señala un punto   
O
  del plano y se traza el vector   
\stackrel{\longrightarrow}{OP}
  representante de   
\vec{\mathbf{u}}
.


2. Por el extremo   
P
  se traza el vector   
\stackrel{\longrightarrow}{PQ}


3. El vector   
\stackrel{\longrightarrow}{OQ}
  que tiene como origen   
O
  ( origen del primero ) y como extremo   
Q
  ( extremo del segundo ) es el representante del vector suma   
\vec{u} \, + \, \vec{v}
.


Imagen:sumaVectores.gif


La suma tiene las siguientes propiedades:


  Asociativa:   
\left(
</p>
<pre> \, \vec{\mathbf{u}} \, + \, \vec{\mathbf{v}} \,
</pre>
<p>\right)
\, + \, \vec{\mathbf{w}} \, = \, 
\vec{\mathbf{u}} \, + \, 
\left(
</p>
<pre> \, \vec{\mathbf{v}} \, + \, \vec{\mathbf{w}} \,
</pre>
<p>\right)


  El vector nulo es   
\vec{\mathbf{0}}
,   pues:   
\vec{\mathbf{u}} \, + \, \vec{\mathbf{0}} \, = \, \vec{\mathbf{0}} \, + \, \vec{\mathbf{u}} \, = \, 
\vec{\mathbf{u}}
. Dado un punto cualquiera   
P
, el vector   
\stackrel{\longrightarrow}{PP}
  es un representante del vector libre   
\vec{\mathbf{0}}
.


  El vector opuesto de   
\vec{\mathbf{v}}
  es   
-\vec{\mathbf{v}}
,   pues:   
\vec{\mathbf{u}} \, + \, \left( -\vec{\mathbf{u}} \right) \, = \, \left(
</p>
<pre> -\vec{\mathbf{u}} \right) \, + \, \vec{\mathbf{u}} \, = \, \vec{\mathbf{0}}
</pre>
<p>


  Conmutativa: 
\vec{\mathbf{u}} \, + \, \vec{\mathbf{v}}\, = \,\vec{\mathbf{v}} \, + \, \vec{\mathbf{u}}


Producto de un número real por un vector


Si   
\vec{\mathbf{u}} 
  es un vector libre y   
\alpha
  un número real, se define el producto   
\alpha \vec{\mathbf{u}} 
  como un nuevo vector que tiene por módulo el producto   
\left| \, \alpha \, \right| \cdot \left| \, \vec{\mathbf{u}} \, \right| 
,   por dirección la misma de   
\vec{\mathbf{u}} 
  y sentido el mismo de   
\vec{\mathbf{u}} 
  si   
\alpha
  es positivo, y opuesto, si   
\alpha
  es negativo.


Imagen:numeroPorVector.gif

El producto de un número real por un vector tiene las siguientes propiedades:



\alpha
\left(
</p>
<pre> \, \vec{\mathbf{u}} \, + \, \vec{\mathbf{v}} \,
</pre>
<p>\right)
</p>
<pre>\, = \, \alpha \vec{\mathbf{u}} \, + \, \alpha \vec{\mathbf{v}}
</pre>
<p>



\left(
</p>
<pre>  \, \alpha \, + \, \mu \,
</pre>
<p>\right)
\vec{\mathbf{u}}
</p>
<pre>\, = \, \alpha \vec{\mathbf{u}} \, + \, \mu \vec{\mathbf{u}} 
</pre>
<p>



1 \cdot \vec{\mathbf{u}} \, = \, \vec{\mathbf{u}}



\alpha
\left(
</p>
<pre>  \, \mu \vec{\mathbf{u}} \,
</pre>
<p>\right) \, = \, 
\left(
</p>
<pre> \, \alpha \mu \,
</pre>
<p>\right)
\vec{\mathbf{u}}


Además, si   
\alpha \vec{\mathbf{u}} \, = \, \vec{\mathbf{0}}
,   se verifica que, o bien   
\alpha \, = \, 0
  o bien   
\vec{\mathbf{u}} \, = \, \vec{\mathbf{0}}
.


Un espacio vectorial es un conjunto ( de vectores ) donde se define una operacion suma y una
operacion producto por un numero real y estas operaciones satisfacen las propiedades de la
suma y producto por un numero real que hemos visto en el conjunto de los vectores libres
del plano.


De hecho, en la definicion de espacio vectorial que acabamos de ver los numeros reales pueden ser sustituidos por otro conjunto, como el conjunto de los numeros complejos, pero a nivel de bachillerato ( wikillerato ) nos centraremos en los numeros reales.


Ejemplo


El conjunto   
R^3
  se define como el conjunto de ternas   
\left(
</p>
<pre> \, x, \, y, \, z \, 
</pre>
<p>\right)
  de números reales. En   
R^3
  se definen la suma y el producto por un número real así:


1. Suma:



\left(
</p>
<pre> \, x_1, \, y_1, \, z_1 \,
</pre>
<p>\right)
\, + \, 
\left(
</p>
<pre> \, x_2, \, y_2, \, z_2 \,
</pre>
<p>\right)
\, = \,
\left(
</p>
<pre> \, x_1 \, + \, x_2, \, y_1 \, + \, y_2, \, z_1 \, + \, z_2 \,
</pre>
<p>\right)


2. Producto por un número real:



\alpha
\left(
</p>
<pre> \, x, \, y, \, z \, 
</pre>
<p>\right)
\, = \,
\left(
</p>
<pre> \, \alpha x, \, \alpha y, \, \alpha z \, 
</pre>
<p>\right)


El conjunto   
R^3
  con estas operaciones es un espacio vectorial.


   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.