Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Concepto de velocidad

De Wikillerato

(Diferencias entre revisiones)
m (Revertidas las ediciones realizadas por 190.156.17.86 (Talk); a la última edición de Laura.2mdc)
Revisión actual (09:04 26 ene 2011) (editar) (deshacer)
m (Revertidas las ediciones realizadas por 200.108.107.61 (Talk); a la última edición de Laura.2mdc)
 
(5 ediciones intermedias no se muestran.)

Revisión actual

Tabla de contenidos

Velocidad media

La velocidad se puede definir como la variación temporal de la posición del móvil.

 \vec v = \frac{ \Delta \vec r}{ \Delta t } = \frac { \vec r_Q -   \vec r_P  }{\Delta t }

Imagen:vector_desplazamiento.gif

Este cociente nos define lo que llamamos velocidad media. Si consideramos que

\vec r = r_x\vec i  + r_y\vec j + r_z \vec k

 \vec v= \frac{\Delta \vec r}{\Delta t } = \frac {\Delta r_x}{ \Delta t }\vec i  + \frac{\Delta r_y}{ \Delta t }\vec j + \frac{\Delta r_z}{ \Delta t }\vec k

Si pretendemos calcular la velocidad entre dos instantes definidos por \Delta t, obtenemos:

 \vec v = \frac { \vec r (t + \Delta t) - \vec r (t)}{ \Delta t}



Velocidad instantánea

Hemos definido la velocidad media, y la hemos definido intuitivamente. Hemos trazado el vector que va desde la posición inicial a la posición final, cuya dirección siempre coincide con la cuerda que une esos dos puntos. Si hacemos cada vez más breves los intervalos de tiempo, la dirección de las cuerdas, y en consecuencia las de los vectores desplazamiento, se van aproximando a la dirección de la tangente a la trayectoria. Si pretendemos determinar la velocidad del móvil en un instante preciso, que denominaremos velocidad instantánea en el instante t, observamos que su dirección coincidirá con la de la tangente a la trayectoria en cada instante.

Y podremos calcular la velocidad en un instante t:

\vec v= \lim_{\Delta t\to 0} \frac{\Delta \vec r }{\Delta t } = \lim_{\Delta t\to 0} \frac {\Delta r_x }{\Delta t}\vec i +  \lim_{\Delta t\to 0} \frac {\Delta r_y }{\Delta t}\vec j + \lim_{\Delta t\to 0} \frac {\Delta r_z }{\Delta t}\vec k

y en consecuencia:

 \vec v = \frac{ d \vec r}{ dt } =  \frac{d r_x}{ dt }\vec i + \frac {d r_y}{ dt } \vec j +  \frac {d r_z}{ dt }\vec k

o lo que es igual :

 \vec v = v_x\vec i + v_y\vec j + v_z\vec k

La velocidad instantánea es una magnitud vectorial cuya dirección coincide siempre con la de la tangente a la trayectoria y su sentido el del movimiento. Al módulo se le llama rapidez, que es una magnitud escalar.

En el S.I. el módulo se mide en m s^{-1}, aunque en la práctica en la Europa continental se hable más frecuentemente de km/h.

Ese módulo se obtendrá hallando la raíz cuadrada de la suma de los cuadrados de sus componentes, es decir:

 v = \sqrt{ v_x^2 + v_y^2 + v_z^2}

Podremos particularizar para los movimientos más estudiados en este curso, que son los movimientos sobre la recta o sobre un plano. De ese modo:


Movimiento sobre una recta

\vec v = \lim_{\Delta t\to 0} \frac{\Delta\vec x}{\Delta t} =\frac{d\vec x}{dt}

Sin embargo, dado que tanto el \vec v como el \vec x tienen la misma dirección, se podrá dar al problema un tratamiento escalar, es decir:

 v = \lim_{\Delta t\to 0} \frac{\Delta x}{\Delta t} =\frac{dx}{dt}

de tal modo que el sentido positivo del movimiento sobre la recta nos vendrá dado por el signo que adquiera \Delta x o la velocidad en la ecuación.


Movimiento sobre un plano

\vec v = v_x\vec i + v_y\vec j

\vec v = \lim_{\Delta t\to 0}\frac{\Delta x}{\Delta t} \vec i + \lim_{\Delta t\to 0}\frac{\Delta y}{\Delta t} \vec j

Como se verá en su momento, el moviendo sobre el plano, podrá estudiarse analizando de modo independiente las variaciones de las componentes r_x y r_y del vector posición de la partícula \vec r, que nos informarán acerca de las componentes v_x y v_y vector velocidad \vec v.


Véase también

  1. Aceleración
   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.