Desarrollo de un determinante
De Wikillerato
m (Revertidas las ediciones realizadas por 200.118.90.180 (Talk); a la última edición de Laura.2mdc) |
|||
(9 ediciones intermedias no se muestran.) | |||
Línea 215: | Línea 215: | ||
El determinante de una matriz cuadrada de orden <math> n </math> es igual a la suma de los productos de los elementos | El determinante de una matriz cuadrada de orden <math> n </math> es igual a la suma de los productos de los elementos | ||
de una línea o columna cualquiera por sus adjuntos respectivos. Es decir: | de una línea o columna cualquiera por sus adjuntos respectivos. Es decir: | ||
+ | |||
+ | <br/> | ||
+ | |||
<center> | <center> | ||
<math> | <math> |
Revisión actual
En esta sección se explica un procedimiento que nos permite calcular determinantes de cualquier orden, pero antes hemos de introducir los conceptos de menor complementario y adjunto.
Menores complementarios y adjuntos
En una matriz cuadrada de orden
se llama menor complementario del elemento
y lo representamos por
al determinante de la matriz cuadrada de orden
que resulta de suprimir la fila
y la columna
de la matriz
Se llama adjunto del elemento
,
y lo representamos por
al producto
:
Ejemplo
Los menores complementarios de la matriz
son
y sus adjuntos son:
Desarrollo de un determinante
El determinante de una matriz cuadrada de orden es igual a la suma de los productos de los elementos
de una línea o columna cualquiera por sus adjuntos respectivos. Es decir:
