Desarrollo de un determinante
De Wikillerato
(→Desarrollo de un determinante) |
m (Revertidas las ediciones realizadas por 200.118.90.180 (Talk); a la última edición de Laura.2mdc) |
||
(5 ediciones intermedias no se muestran.) | |||
Línea 213: | Línea 213: | ||
<br/> | <br/> | ||
- | El determinante de una matriz cuadrada de orden | + | El determinante de una matriz cuadrada de orden <math> n </math> es igual a la suma de los productos de los elementos |
de una línea o columna cualquiera por sus adjuntos respectivos. Es decir: | de una línea o columna cualquiera por sus adjuntos respectivos. Es decir: | ||
Revisión actual
En esta sección se explica un procedimiento que nos permite calcular determinantes de cualquier orden, pero antes hemos de introducir los conceptos de menor complementario y adjunto.
Menores complementarios y adjuntos
En una matriz cuadrada de orden se llama menor complementario del elemento y lo representamos por al determinante de la matriz cuadrada de orden que resulta de suprimir la fila y la columna de la matriz
Se llama adjunto del elemento , y lo representamos por al producto :
Ejemplo
Los menores complementarios de la matriz
son
y sus adjuntos son:
Desarrollo de un determinante
El determinante de una matriz cuadrada de orden es igual a la suma de los productos de los elementos de una línea o columna cualquiera por sus adjuntos respectivos. Es decir: