Subespacios vectoriales
De Wikillerato
(→Operaciones con subespacios) |
(→Condición de existencia de subespacio) |
||
Línea 6: | Línea 6: | ||
- | + | Stands back from the kbyeorad in amazement! Thanks! | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
== Unión == | == Unión == |
Revisión de 13:41 12 ago 2011
Tabla de contenidos |
Definición
Sean (V, +, K, *) un espacio vectorial y S un subconjunto de V.
S es subespacio vectorial de V si (S, +, K, *) es espacio vectorial en sí mismo, siendo + y * las mismas operaciones definidas en V. Las bases de un subespacio son el subconjunto de "alfa" y "beta" en el menor subespacio formado por la recta que pasa por dos puntos.
Stands back from the kbyeorad in amazement! Thanks!
Unión
En la gran mayoría de los casos la unión de dos subespacios no es un subespacio de V, pues no se cumple con la ley de composición interna.
Intersección
La intersección de dos subespacios es un subespacio de V.
Suma
La suma de dos subespacios es un subespacio de V.
Suma directa
Si la intersección entre S y W es el subespacio trivial (es decir, el vector nulo), entonces a la suma se la llama "suma directa". Es decir que si .
Fórmula de Grassman (o Teorema de las dimensiones)
Sean los subespacios S, W del espacio vectorial V:
Esta fórmula resuelve que la dimensión de la suma de los subespacios S y W será igual a la dimensión del subespacio S más la dimensión del subespacio W menos la dimensión de la intersección de ambos.
Por ejemplo, siendo dim(S) = 3 y dim(W) = 2 y teniendo como intersección un subespacio de dimensión 1. Luego, dim(S + W) = 4.
Tweet