Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Subespacios vectoriales

De Wikillerato

(Diferencias entre revisiones)
(Unión)
(Definición)
Línea 1: Línea 1:
-
== Definición ==
+
Too many compliments too little space, thkans!
-
+
-
Sean (V, +, K, *) un espacio vectorial y S un subconjunto de V.
+
-
 
+
-
S es subespacio vectorial de V si (S, +, K, *) es espacio vectorial en sí mismo, siendo + y * las mismas operaciones definidas en V. Las bases de un subespacio son el subconjunto de "alfa" y "beta" en el menor subespacio formado por la recta que pasa por dos puntos.
+
-
 
+
-
 
+
-
Stands back from the kbyeorad in amazement! Thanks!
+
-
 
+
-
It's wonedfrul to have you on our side, haha!
+
== Suma ==
== Suma ==

Revisión de 16:10 13 ago 2011

Too many compliments too little space, thkans!

Suma

La suma de dos subespacios es un subespacio de V.


Suma directa

Si la intersección entre S y W es el subespacio trivial (es decir, el vector nulo), entonces a la suma se la llama "suma directa". Es decir que si .

Fórmula de Grassman (o Teorema de las dimensiones)

Sean los subespacios S, W del espacio vectorial V:


Esta fórmula resuelve que la dimensión de la suma de los subespacios S y W será igual a la dimensión del subespacio S más la dimensión del subespacio W menos la dimensión de la intersección de ambos.

Por ejemplo, siendo dim(S) = 3 y dim(W) = 2 y teniendo como intersección un subespacio de dimensión 1. Luego, dim(S + W) = 4.

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.