Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Teorema de Bayes

De Wikillerato

(Diferencias entre revisiones)
Revisión actual (10:54 7 oct 2011) (editar) (deshacer)
m (Revertidas las ediciones realizadas por 81.38.134.225 (Talk); a la última edición de Laura.2mdc)
 
(18 ediciones intermedias no se muestran.)
Línea 3: Línea 3:
==Enunciado==
==Enunciado==
-
<br/>
+
{{teorema|1=Sean &nbsp;
-
 
+
-
Sean &nbsp;
+
<math>
<math>
A_1, \, A_2, \, \ldots, \, A_n \,
A_1, \, A_2, \, \ldots, \, A_n \,
</math>
</math>
-
&nbsp; sucesos incompatibles dos a dos, tales que siempre ocurre alguno de ellos y la
+
&nbsp; sucesos incompatibles dos a dos, tales que siempre ocurre alguno de ellos, y sea &nbsp;
-
probabilidad de cada uno de ellos es distinta de cero, y sea &nbsp;
+
<math>
<math>
B
B
Línea 20: Línea 17:
\, B \, \left| \, A_i \, \right.
\, B \, \left| \, A_i \, \right.
\right)
\right)
-
</math>
+
</math> Entonces las probabilidades &nbsp;
-
.
+
-
 
+
-
<br/>
+
-
 
+
-
Entonces las probabilidades &nbsp;
+
<math>
<math>
\mathrm{P}
\mathrm{P}
Línea 40: Línea 32:
\mathrm{P}
\mathrm{P}
\left(
\left(
-
\, B\, \left| \, A_i \, \right.
+
\, A_i \, \left| \, B \, \right.
\right)
\right)
\, = \, \frac
\, = \, \frac
Línea 70: Línea 62:
\left(
\left(
\, B \, \left| \, A_2 \, \right.
\, B \, \left| \, A_2 \, \right.
 +
\right)
\, + \, \ldots \, + \,
\, + \, \ldots \, + \,
\mathrm{P}
\mathrm{P}
Línea 81: Línea 74:
}
}
</math>
</math>
-
</center>
+
</center>|2=[[Bayes]]}}
 +
 
-
<br/>
 
==Demostración==
==Demostración==
Línea 125: Línea 118:
\mathrm{P}
\mathrm{P}
\left(
\left(
-
\, A_i \, \cap \, B \,
+
\, A_i \, \left| \, B \, \right.
\right)
\right)
</math>
</math>
Línea 136: Línea 129:
\mathrm{P}
\mathrm{P}
\left(
\left(
-
\, A_i \, \cap \, B \,
+
\, A_i \, \left| \, B \, \right.
\right)
\right)
\, = \, \frac
\, = \, \frac
Línea 189: Línea 182:
\left(
\left(
\, B \, \left| \, A_2 \, \right.
\, B \, \left| \, A_2 \, \right.
 +
\right)
\, + \, \ldots \, + \,
\, + \, \ldots \, + \,
\mathrm{P}
\mathrm{P}
Línea 211: Línea 205:
<br/>
<br/>
-
Tenemos tres urna: &nbsp;
+
Tenemos tres urnas: &nbsp;
<math>
<math>
U_1
U_1
</math>
</math>
-
&nbsp; con tres bolas rojas y 5 negras, &nbsp;
+
&nbsp; con tres bolas rojas y cinco negras, &nbsp;
<math>
<math>
U_2
U_2
Línea 254: Línea 248:
\, U_1 \, \left| \, R \, \, \right.
\, U_1 \, \left| \, R \, \, \right.
\right)
\right)
 +
\, = \,
 +
</math>
 +
</center>
 +
 +
<br/>
 +
 +
<center>
 +
<math>
\, = \, \frac
\, = \, \frac
{
{
Línea 282: Línea 284:
\left(
\left(
\, R \, \left| \, U_2 \, \right.
\, R \, \left| \, U_2 \, \right.
 +
\right)
\, + \,
\, + \,
\mathrm{P}
\mathrm{P}
Línea 292: Línea 295:
\right)
\right)
}
}
-
\, = \,
+
}
 +
</math>
 +
</center>
 +
 
 +
<br/>
 +
 
 +
<center>
 +
<math>
 +
\, = \, \frac
 +
{
 +
\frac{1}{3} \cdot \frac{3}{8}
 +
}
 +
{
 +
\frac{1}{3} \cdot \frac{3}{8} \, + \, \frac{1}{3} \cdot \frac{2}{3} \, + \,
 +
\frac{1}{3} \cdot \frac{2}{5}
 +
}
</math>
</math>
</center>
</center>
Línea 298: Línea 316:
<br/>
<br/>
-
[[Category:Matemáticas]]
+
[[Category: Matemáticas]]

Revisión actual

Tabla de contenidos


Enunciado

Sean   
A_1, \, A_2, \, \ldots, \, A_n \, 
  sucesos incompatibles dos a dos, tales que siempre ocurre alguno de ellos, y sea   
B
  un suceso cualquiera del que se conocen las probabilidades condicionales   
\mathrm{P}
\left(
</p>
<pre> \, B \, \left| \, A_i \, \right.
</pre>
<p>\right)
Entonces las probabilidades   
\mathrm{P}
\left(
</p>
<pre> \, A_i \, \left| \, B \, \right.
</pre>
<p>\right)
  vienen dadas por la expresión:



\mathrm{P}
\left(
</p>
<pre> \, A_i \, \left| \, B \, \right.
</pre>
<p>\right)
\, = \, \frac
{
</p>
<pre> \mathrm{P}
 \left(
   \, A_i \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, B \, \left| \, A_i \, \right.
 \right)
</pre>
<p>}
{
</p>
<pre> \mathrm{P}
 \left(
   \, A_1 \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, B \, \left| \, A_1 \, \right.
 \right)
 \, + \,
 \mathrm{P}
 \left(
   \, A_2 \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, B \, \left| \, A_2 \, \right.
 \right)
 \, + \, \ldots \, + \, 
 \mathrm{P}
 \left(
   \, A_n \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, B \, \left| \, A_n \, \right.
 \right)
</pre>
<p>}





Demostración


Por definición de probabilidad condicionada



\mathrm{P}
\left(
</p>
<pre> \, A_i \, \cap \, B \,
</pre>
<p>\right)
\, = \, 
\mathrm{P}
\left(
</p>
<pre> \, A_i \,
</pre>
<p>\right)
\cdot \mathrm{P}
\left(
</p>
<pre> \, B \, \left| \, A_i \, \right.
</pre>
<p>\right)
\, = \, \mathrm{P}
\left(
</p>
<pre> \, B \,
</pre>
<p>\right)
\cdot \mathrm{P}
\left(
</p>
<pre> \, A_i \, \left| \, B \, \right.
</pre>
<p>\right)


despejando   
\mathrm{P}
\left(
</p>
<pre> \, A_i \, \left| \, B \, \right.
</pre>
<p>\right)
, se tiene:



\mathrm{P}
\left(
</p>
<pre> \, A_i \, \left| \, B \, \right.
</pre>
<p>\right)
\, = \, \frac
{
</p>
<pre> \mathrm{P}
 \left(
   \, A_i \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, B \, \left| \, A_i \, \right.
 \right)
</pre>
<p>}
{
</p>
<pre> \mathrm{P}
 \left(
   \, B \,
 \right)
</pre>
<p>}


La probabilidad   
\mathrm{P}
\left(
</p>
<pre> \, B \,
</pre>
<p>\right)
, por el teorema de la probabilidad total, es igual a



</p>
<pre> \mathrm{P}
 \left(
   \, A_1 \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, B \, \left| \, A_1 \, \right.
 \right)
 \, + \,
 \mathrm{P}
 \left(
   \, A_2 \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, B \, \left| \, A_2 \, \right.
 \right)
 \, + \, \ldots \, + \, 
 \mathrm{P}
 \left(
   \, A_n \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, B \, \left| \, A_n \, \right.
 \right)
</pre>
<p>


Sustituyendo en la ecuación anterior, obtenemos la fórmula de Bayes.


Ejemplo


Tenemos tres urnas:   
U_1
  con tres bolas rojas y cinco negras,   
U_2
  con dos bolas rojas y una negra y   
U_3
  con dos bolas rojas y tres negras. Escogemos una urna al azar y extraemos una bola. Si la bola ha sido roja, ¿cuál es la probabilidad de haber sido extraída de la urna   
U_1
?


Llamamos   
R
  al suceso sacar bola roja. La probabilidad pedida es   
\mathrm{P}
\left(
</p>
<pre> \, U_1 \, \left| \, R \, \, \right.
</pre>
<p>\right)
. Utilizando el teorema de Bayes, tenemos:



\mathrm{P}
\left(
</p>
<pre> \, U_1 \, \left| \, R \, \, \right.
</pre>
<p>\right)
\, = \,



\, = \, \frac
{
</p>
<pre> \mathrm{P}
 \left(
   \, U_1 \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, R \, \left| \, U_1 \, \right.
 \right)
</pre>
<p>}
{
</p>
<pre> \mathrm{P}
 \left(
   \, U_1 \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, R \, \left| \, U_1 \, \right.
 \right)
 \, + \,
 \mathrm{P}
 \left(
   \, U_2 \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, R \, \left| \, U_2 \, \right.
 \right)
     \, + \, 
 \mathrm{P}
 \left(
   \, U_3 \,
 \right)
 \cdot \mathrm{P}
 \left(
   \, R \, \left| \, U_3 \, \right.
 \right)
</pre>
<p>}
}



\, = \, \frac
{
</p>
<pre> \frac{1}{3} \cdot \frac{3}{8}
</pre>
<p>}
{
</p>
<pre> \frac{1}{3} \cdot \frac{3}{8} \, + \, \frac{1}{3} \cdot \frac{2}{3} \, + \,
 \frac{1}{3} \cdot \frac{2}{5}
</pre>
<p>}


   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.