Posiciones relativas de dos rectas
De Wikillerato
(→Coincidentes: Rango ( A ) = Rango ( A | B ) = 2) |
|||
(47 ediciones intermedias no se muestran.) | |||
Línea 1: | Línea 1: | ||
- | |||
- | |||
==Introducción== | ==Introducción== | ||
Línea 33: | Línea 31: | ||
s | s | ||
</math> | </math> | ||
- | | + | cada una de las cuales vienen dada como la interseccion de dos planos: |
<br/> | <br/> | ||
Línea 123: | Línea 121: | ||
\ge 2 | \ge 2 | ||
</math> | </math> | ||
- | . Según el teorema de Rouché- | + | . Según el teorema de Rouché-Fröbenius, se pueden presentar los casos que describimos a continuacion. |
<br/> | <br/> | ||
Línea 135: | Línea 133: | ||
<br/> | <br/> | ||
- | El sistema de ecuaciones es compatible indeterminado | + | El sistema de ecuaciones es compatible indeterminado ( tiene infinitas |
- | rectas tienen todos sus puntos comunes. Son '''''rectas coincidentes.''''' | + | soluciones ). Las |
+ | rectas tienen todos sus puntos comunes. Son '''''rectas coincidentes.''''' | ||
- | <br/> | + | <br/> |
===Paralelas: Rango ( A ) = 2, Rango ( A | B ) = 3=== | ===Paralelas: Rango ( A ) = 2, Rango ( A | B ) = 3=== | ||
Línea 154: | Línea 153: | ||
<br/> | <br/> | ||
- | El sistema de ecuaciones es compatible determinado | + | El sistema de ecuaciones es compatible determinado ( tiene una solución única ). Las rectas |
- | tienen un solo punto común, que es el punto de corte. Son '''''rectas secantes.''''' | + | tienen un solo punto común, que es el punto de corte de ambas rectas. Son '''''rectas secantes.''''' |
<br/> | <br/> |
Revisión actual
Tabla de contenidos |
Introducción
Dos rectas pueden adoptar en el espacio las cuatro posiciones relativas siguientes:
1. Coincidentes.
2. Paralelas.
3. Secantes.
4. Rectas que se cruzan.
Supongamos que tenemos dos rectas y cada una de las cuales vienen dada como la interseccion de dos planos:
Para determinar su posición relativa en el espacio tendremos que analizar el sistema formado por las ecuaciones de los cuatro planos, cuyas matrices asociadas son:
Las dos primeras filas de son linealmente independientes, ya que ambos planos determinan una recta. Por tanto, Rango ( A ) y Rango ( A | B ) . Según el teorema de Rouché-Fröbenius, se pueden presentar los casos que describimos a continuacion.
Casos que se pueden dar:
Coincidentes: Rango ( A ) = Rango ( A | B ) = 2
El sistema de ecuaciones es compatible indeterminado ( tiene infinitas soluciones ). Las rectas tienen todos sus puntos comunes. Son rectas coincidentes.
Paralelas: Rango ( A ) = 2, Rango ( A | B ) = 3
El sistema es incompatible, no tiene solución. Las rectas no tienen ningún punto en común, pero como Rango ( A ) = 2, las rectas son coplanarias ( estan en el mismo plano ). Son rectas paralelas.
Secantes: Rango ( A ) = Rango ( A | B ) = 3
El sistema de ecuaciones es compatible determinado ( tiene una solución única ). Las rectas tienen un solo punto común, que es el punto de corte de ambas rectas. Son rectas secantes.
Rectas que se cruzan: Rango ( A ) = 3, Rango ( A | B ) =4
El sistema es incompatible, no tiene solucion. No tienen ningún punto en común, y como Rango ( A ) = 3, las rectas no son coplanarias ( no estan contenidas en un mismo plano ). Son rectas que se cruzan.
Otro procedimiento para determinar la posicion relativa de dos rectas es el siguiente:
1. Obtenemos dos vectores directores y de ambas rectas ( uno de cada recta ).
2. Si estos son paralelos entonces las rectas son coincidentes o paralelas. Para saber si son coincidentes o paralelas, hallamos un punto en una de las rectas y comprobamos si esta en la otra: si esta, entonces las rectas son coincidentes, si no esta, las rectas son paralelas.
3. Si y no son paralelos, entonces las rectas son secantes o se cruzan. En este caso, juntariamos las ecuaciones de las dos rectas y resolveriamos el sistema resultante: si no tiene solucion, las rectas se cruzan, si tiene solucion, las rectas son secantes.
Este procedimiento no requiere que las rectas esten dadas como interseccion de dos planos paralelos.