Posiciones relativas de dos rectas
De Wikillerato
(→Rectas que se cruzan: Rango ( A ) = 3, Rango ( A | B ) =4) |
|||
(3 ediciones intermedias no se muestran.) | |||
Línea 158: | Línea 158: | ||
<br/> | <br/> | ||
- | + | ===Rectas que se cruzan: Rango ( A ) = 3, Rango ( A | B ) =4=== | |
- | + | ||
- | + | <br/> | |
- | + | ||
- | . | + | El sistema es incompatible, no tiene solucion. No tienen ningún punto en común, y como |
- | + | Rango ( A ) = 3, las rectas no son coplanarias ( no estan contenidas en un mismo plano | |
- | . | + | ). Son '''''rectas que se cruzan.''''' |
- | + | ||
- | + | <br/> | |
- | + | ||
- | + | ---- | |
- | + | ||
- | + | <br/> | |
- | + | ||
- | + | Otro procedimiento para determinar la posicion relativa de dos rectas es el siguiente: | |
- | + | ||
- | + | <br/> | |
- | . | + | |
- | + | 1. Obtenemos dos vectores directores | |
- | . | + | <math> |
- | . | + | \vec{\mathbf{u}} |
- | + | </math> | |
- | . | + | y |
- | . | + | <math> |
- | + | \vec{\mathbf{v}} | |
- | + | </math> | |
- | + | de ambas rectas ( uno de cada recta ). | |
- | + | ||
+ | <br/> | ||
+ | |||
+ | 2. Si estos son paralelos entonces las rectas son coincidentes o paralelas. Para saber si | ||
+ | son coincidentes o paralelas, hallamos un punto en una de las rectas y comprobamos si | ||
+ | esta en la otra: si esta, entonces las rectas son coincidentes, si no esta, las rectas | ||
+ | son paralelas. | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | 3. Si | ||
+ | <math> | ||
+ | \vec{\mathbf{u}} | ||
+ | </math> | ||
+ | y | ||
+ | <math> | ||
+ | \vec{\mathbf{v}} | ||
+ | </math> | ||
+ | no son paralelos, entonces las rectas son secantes o se cruzan. En este caso, | ||
+ | juntariamos las ecuaciones de las dos rectas y resolveriamos el sistema resultante: si no | ||
+ | tiene solucion, las rectas se cruzan, si tiene solucion, las rectas son secantes. | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | Este procedimiento no requiere que las rectas esten dadas como interseccion de dos planos | ||
+ | paralelos. | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | [[Category:Matemáticas]] |
Revisión actual
Tabla de contenidos |
Introducción
Dos rectas pueden adoptar en el espacio las cuatro posiciones relativas siguientes:
1. Coincidentes.
2. Paralelas.
3. Secantes.
4. Rectas que se cruzan.
Supongamos que tenemos dos rectas y cada una de las cuales vienen dada como la interseccion de dos planos:
Para determinar su posición relativa en el espacio tendremos que analizar el sistema formado por las ecuaciones de los cuatro planos, cuyas matrices asociadas son:
Las dos primeras filas de son linealmente independientes, ya que ambos planos determinan una recta. Por tanto, Rango ( A ) y Rango ( A | B ) . Según el teorema de Rouché-Fröbenius, se pueden presentar los casos que describimos a continuacion.
Casos que se pueden dar:
Coincidentes: Rango ( A ) = Rango ( A | B ) = 2
El sistema de ecuaciones es compatible indeterminado ( tiene infinitas soluciones ). Las rectas tienen todos sus puntos comunes. Son rectas coincidentes.
Paralelas: Rango ( A ) = 2, Rango ( A | B ) = 3
El sistema es incompatible, no tiene solución. Las rectas no tienen ningún punto en común, pero como Rango ( A ) = 2, las rectas son coplanarias ( estan en el mismo plano ). Son rectas paralelas.
Secantes: Rango ( A ) = Rango ( A | B ) = 3
El sistema de ecuaciones es compatible determinado ( tiene una solución única ). Las rectas tienen un solo punto común, que es el punto de corte de ambas rectas. Son rectas secantes.
Rectas que se cruzan: Rango ( A ) = 3, Rango ( A | B ) =4
El sistema es incompatible, no tiene solucion. No tienen ningún punto en común, y como Rango ( A ) = 3, las rectas no son coplanarias ( no estan contenidas en un mismo plano ). Son rectas que se cruzan.
Otro procedimiento para determinar la posicion relativa de dos rectas es el siguiente:
1. Obtenemos dos vectores directores y de ambas rectas ( uno de cada recta ).
2. Si estos son paralelos entonces las rectas son coincidentes o paralelas. Para saber si son coincidentes o paralelas, hallamos un punto en una de las rectas y comprobamos si esta en la otra: si esta, entonces las rectas son coincidentes, si no esta, las rectas son paralelas.
3. Si y no son paralelos, entonces las rectas son secantes o se cruzan. En este caso, juntariamos las ecuaciones de las dos rectas y resolveriamos el sistema resultante: si no tiene solucion, las rectas se cruzan, si tiene solucion, las rectas son secantes.
Este procedimiento no requiere que las rectas esten dadas como interseccion de dos planos paralelos.