Propiedades de los determinantes
De Wikillerato
Línea 9: | Línea 9: | ||
| | ||
<math> | <math> | ||
- | F_i | + | F_i |
</math> | </math> | ||
- | una fila | + | y |
- | + | <math> | |
- | El determinante de una matriz lo podemos ver como una | + | C_j |
+ | </math> | ||
+ | una fila y columna cualesquiera de esa matriz. | ||
+ | El determinante de una matriz lo podemos ver como una función de sus filas | ||
<br/> | <br/> | ||
Línea 43: | Línea 46: | ||
<br/> | <br/> | ||
- | El determinante de una matriz cuadrada es igual al determinante de su matriz | + | 1. El determinante de una matriz cuadrada es igual al determinante de su matriz |
traspuesta. | traspuesta. | ||
Línea 56: | Línea 59: | ||
<br/> | <br/> | ||
- | Si los elementos de una línea o columna de una matriz se multiplican por un número, el | + | 2. Si los elementos de una línea o columna de una matriz se multiplican por un número, el |
determinante de la matriz queda multiplicado por dicho numero: | determinante de la matriz queda multiplicado por dicho numero: | ||
Línea 81: | Línea 84: | ||
<br/> | <br/> | ||
- | Si todas las lineas de una matriz de orden | + | 3. Si todas las lineas de una matriz de orden |
<math> | <math> | ||
n | n | ||
Línea 104: | Línea 107: | ||
<br/> | <br/> | ||
- | + | 4. | |
<center> | <center> | ||
<math> | <math> | ||
\makebox{det} \left( \, C_1, \, C_2, \, \ldots, \, C_j + C_j^\prime, \, \ldots, \, C_n \, | \makebox{det} \left( \, C_1, \, C_2, \, \ldots, \, C_j + C_j^\prime, \, \ldots, \, C_n \, | ||
\right) | \right) | ||
- | + | \, = \, | |
+ | </math> | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | <math> | ||
\makebox{det} \left( \, C_1, \, C_2, \, \ldots, \, C_j, \, \ldots, \, C_n \, \right) | \makebox{det} \left( \, C_1, \, C_2, \, \ldots, \, C_j, \, \ldots, \, C_n \, \right) | ||
\, + \, | \, + \, | ||
Línea 122: | Línea 130: | ||
\makebox{det} \left( \, F_1, \, F_2, \, \ldots, \, F_i + F_i^\prime, \, \ldots, \, F_n \, | \makebox{det} \left( \, F_1, \, F_2, \, \ldots, \, F_i + F_i^\prime, \, \ldots, \, F_n \, | ||
\right) | \right) | ||
- | + | \, = \, | |
- | \makebox{det} \left( \, F_1, \, F_2, \, \ldots, \, F_i, \, \ldots, \, F_n \, \right) | + | </math> |
- | + | ||
+ | <br/> | ||
+ | |||
+ | <math> | ||
+ | \, = \, \makebox{det} \left( \, F_1, \, F_2, \, \ldots, \, F_i, \, \ldots, \, F_n \, \right) | ||
+ | \, + \, | ||
\makebox{det} \left( \, F_1, \, F_2, \, \ldots, \, F_i^\prime, \, \ldots, \, F_n \, \right) | \makebox{det} \left( \, F_1, \, F_2, \, \ldots, \, F_i^\prime, \, \ldots, \, F_n \, \right) | ||
</math> | </math> | ||
Línea 131: | Línea 144: | ||
<br/> | <br/> | ||
- | El determinante del producto de dos matrices cuadradas es igual al producto de los | + | 5. El determinante del producto de dos matrices cuadradas es igual al producto de los |
determinantes de ambas matrices: | determinantes de ambas matrices: | ||
<math> | <math> | ||
Línea 138: | Línea 151: | ||
</math> | </math> | ||
- | Si en una matriz cuadrada se permutan dos lineas, su determinante cambia de signo: | + | <br/> |
+ | |||
+ | 6. Si en una matriz cuadrada se permutan dos lineas, su determinante cambia de signo: | ||
<br/> | <br/> | ||
Línea 153: | Línea 168: | ||
<br/> | <br/> | ||
- | Si una línea de una matriz cuadrada es combinacion lineal de las lineas restantes, es | + | 7. Si una línea de una matriz cuadrada es combinacion lineal de las lineas restantes, es |
decir, es el resultado de sumar los elementos de otras lineas multiplicadas por números | decir, es el resultado de sumar los elementos de otras lineas multiplicadas por números | ||
reales, su determinante es cero. Consecuencia inmediata de esta propiedad es que si una | reales, su determinante es cero. Consecuencia inmediata de esta propiedad es que si una | ||
Línea 160: | Línea 175: | ||
<br/> | <br/> | ||
- | Si a los elementos de una línea de una matriz cuadrada se les suma una combinacion | + | 8. Si a los elementos de una línea de una matriz cuadrada se les suma una combinacion |
lineal de las líneas restantes, su determinante no varia. | lineal de las líneas restantes, su determinante no varia. | ||
Revisión de 12:35 12 ene 2007
En lo que sigue consideraremos como una matriz cuadrada de orden y una fila y columna cualesquiera de esa matriz. El determinante de una matriz lo podemos ver como una función de sus filas
o de sus columnas
Las propiedades mas importantes de los determinantes son:
1. El determinante de una matriz cuadrada es igual al determinante de su matriz traspuesta.
2. Si los elementos de una línea o columna de una matriz se multiplican por un número, el determinante de la matriz queda multiplicado por dicho numero:
3. Si todas las lineas de una matriz de orden están multiplicadas por un mismo número el determinante de la matriz queda multiplicado por
4.
5. El determinante del producto de dos matrices cuadradas es igual al producto de los determinantes de ambas matrices:
6. Si en una matriz cuadrada se permutan dos lineas, su determinante cambia de signo:
7. Si una línea de una matriz cuadrada es combinacion lineal de las lineas restantes, es decir, es el resultado de sumar los elementos de otras lineas multiplicadas por números reales, su determinante es cero. Consecuencia inmediata de esta propiedad es que si una matriz tiene una línea de ceros su determinante es cero.
8. Si a los elementos de una línea de una matriz cuadrada se les suma una combinacion lineal de las líneas restantes, su determinante no varia.
El metodo de Chío consiste en hacer cero el mayor número posible de elementos de una línea utilizando las propiedad anterior de los determinantes y posteriormente desarrollar el determinante por los adjuntos de los elementos de esa linea en la que hemos hecho ceros.