Desarrollo de un determinante
De Wikillerato
(→Ejemplo) |
(→Ejercicios resueltos) |
||
Línea 169: | Línea 169: | ||
- | + | ||
- | + | ||
==Matriz adjunta== | ==Matriz adjunta== |
Revisión de 15:08 5 mar 2007
En esta sección se explica un procedimiento que nos permite calcular determinantes de cualquier orden, pero antes hemos de introducir los conceptos de menor complementario, adjunto y matriz adjunta.
Tabla de contenidos |
Menor complementario
Para una matriz cuadrada de orden se llama menor complementario del elemento y lo representamos por al determinante de la matriz cuadrada de orden que resulta de suprimir la fila y la columna de la matriz
Ejemplo
Los menores complementarios de la matriz
son
Matriz adjunta
Para una matriz cuadrada de orden se llama adjunto del elemento y lo representamos por al producto , es decir:
La matriz cuyos elementos son los adjuntos de los elementos de una matriz cuadrada se llama matriz adjunta de y se denota por
Ejemplo
Los adjuntos de la matriz del ejemplo anterior son:
La matriz adjunta de es
Desarrollo de un determinante
El determinante de una matriz cuadrada de orden es igual a la suma de los productos de los elementos de una línea o columna cualquiera por sus adjuntos respectivos. Simbolicamente: