Ayuda:Fórmulas Matemáticas
De Wikillerato
(Diferencias entre revisiones)
(25 ediciones intermedias no se muestran.) | |||
Línea 1: | Línea 1: | ||
- | + | A continuación ofrecemos un cuadro de referencia con nociones básicas y ejemplos que sirven de ayuda para escribir fórmulas utilizando el código LaTeX. | |
- | + | ||
- | + | <h3>Básicos</h3> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math> | + | <table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0"> |
+ | <tr> | ||
+ | <th colspan="2">Acentos</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</code></td> | ||
+ | <td><math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\check{a} \bar{a} \ddot{a} \dot{a}</code></td> | ||
+ | <td><math> \check{a} \bar{a} \ddot{a} \dot{a} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Funciones estándar</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\sin a \cos b \tan c</code></td> | ||
+ | <td><math> \sin a \cos b \tan c </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\sec d \csc e \cot f</code></td> | ||
+ | <td><math> \sec d \csc e \cot f </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\arcsin h \arccos i \arctan j</code></td> | ||
+ | <td><math> \arcsin h \arccos i \arctan j </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\sinh k \cosh l \tanh m \coth n</code></td> | ||
+ | <td><math> \sinh k \cosh l \tanh m \coth n </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\lim u \limsup v \liminf w \min x \max y</code></td> | ||
+ | <td><math> \lim u \limsup v \liminf w \min x \max y </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g</code></td> | ||
+ | <td><math> \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Derivadas</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\nabla \partial x dx \dot x \ddot y</code></td> | ||
+ | <td><math> \nabla \partial x dx \dot x \ddot y </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Conjuntos</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\forall \exists \emptyset \varnothing</code></td> | ||
+ | <td><math> \forall \exists \emptyset \varnothing </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\in \ni \notin \subset \subseteq \supset \supseteq</code></td> | ||
+ | <td><math> \in \ni \notin \subset \subseteq \supset \supseteq </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus</code></td> | ||
+ | <td><math> \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup</code></td> | ||
+ | <td><math> \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Operadores</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>+ \oplus \bigoplus \pm \mp -</code></td> | ||
+ | <td><math> + \oplus \bigoplus \pm \mp - </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\times \otimes \bigotimes \cdot \circ \bullet \bigodot</code></td> | ||
+ | <td><math> \times \otimes \bigotimes \cdot \circ \bullet \bigodot </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\star * / \div \frac{1}{2}</code></td> | ||
+ | <td><math> \star * / \div \frac{1}{2} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Lógica</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\land \wedge \bigwedge \bar{q} \to p</code></td> | ||
+ | <td><math> \land \wedge \bigwedge \bar{q} \to p </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\lor \vee \bigvee \lnot \neg q \And</code></td> | ||
+ | <td><math> \lor \vee \bigvee \lnot \neg q \And </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Raíces</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\sqrt{2} \sqrt[n]{x}</code></td> | ||
+ | <td><math> \sqrt{2} \sqrt[n]{x} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Relaciones</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\sim \approx \simeq \cong</code></td> | ||
+ | <td><math> \sim \approx \simeq \cong </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto</code></td> | ||
+ | <td><math> \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Geometría</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ</code></td> | ||
+ | <td><math> \Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Flechas</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow</code></td> | ||
+ | <td><math> \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft</code></td> | ||
+ | <td><math> \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow</code></td> | ||
+ | <td><math> \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\Longrightarrow \Uparrow \Downarrow \Updownarrow</code></td> | ||
+ | <td><math> \Longrightarrow \Uparrow \Downarrow \Updownarrow </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\nLeftrightarrow \longleftrightarrow</code></td> | ||
+ | <td><math> \nLeftrightarrow \longleftrightarrow </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Especial</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\eth \S \P \% \dagger \ddagger \ldots \cdots</code></td> | ||
+ | <td><math> \eth \S \P \% \dagger \ddagger \ldots \cdots </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\smile \frown \wr \triangleleft \triangleright \infty \bot \top</code></td> | ||
+ | <td><math> \smile \frown \wr \triangleleft \triangleright \infty \bot \top </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar</code></td> | ||
+ | <td><math> \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th colspan="2">Otros</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</code></td> | ||
+ | <td><math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</code></td> | ||
+ | <td><math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</code></td> | ||
+ | <td><math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</code></td> | ||
+ | <td><math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><code>\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot</code></td> | ||
+ | <td><math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox </code></td> | ||
+ | <td><math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><code>\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</code></td> | ||
+ | <td><math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</code></td> | ||
+ | <td><math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</code></td> | ||
+ | <td><math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</code></td> | ||
+ | <td><math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</code></td> | ||
+ | <td><math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr</code></td> | ||
+ | <td><math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</code></td> | ||
+ | <td><math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</code></td> | ||
+ | <td><math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</code></td> | ||
+ | <td><math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | <h3>Subíndices, superíndices, integrales</h3> | ||
+ | |||
+ | <table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0"> | ||
+ | <tr> | ||
+ | <th> </th> | ||
+ | <th>Sintaxis</th> | ||
+ | <th>Cómo se verá</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Superíndice</td> | ||
+ | <td><code>a^2</code></td> | ||
+ | <td><math> a^2 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Subíndice</td> | ||
+ | <td><code>a_2</code></td> | ||
+ | <td><math> a_2 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td rowspan="2">Agrupar</td> | ||
+ | <td><code>a^{2+2}</code></td> | ||
+ | <td><math> a^{2+2} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>a_{i,j}</code></td> | ||
+ | <td><math> a_{i,j} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Combinar superindice y subíndice</td> | ||
+ | <td><code>x_2^3</code></td> | ||
+ | <td><math> x_2^3 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td rowspan="2">Superíndices y subíndices, anteriores, posteriores, arriba y abajo</td> | ||
+ | <td><code>\sideset {_1^2} {_3^4} \prod_a^b</code></td> | ||
+ | <td><math> \sideset {_1^2} {_3^4} \prod_a^b </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>{}_1^2 \! \Omega_3^4</code></td> | ||
+ | <td><math> {}_1^2 \! \Omega_3^4 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td rowspan="3">Apilar</td> | ||
+ | <td><code>\overset { \alpha} { \omega}</code></td> | ||
+ | <td><math> \overset { \alpha} { \omega} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\overset { \alpha} { \underset { \gamma} { \omega}}</code></td> | ||
+ | <td><math> \overset { \alpha} { \underset { \gamma} { \omega}} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\stackrel { \alpha} { \omega}</code></td> | ||
+ | <td><math> \stackrel { \alpha} { \omega} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Derivadas</td> | ||
+ | <td><code>x', y'', f', f''</code></td> | ||
+ | <td><math> x', y'', f', f'' </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td rowspan="3">Subrayado, línea superior, vectores</td> | ||
+ | <td><code>\hat a \ \bar b \ \vec c</code></td> | ||
+ | <td><math> \hat a \ \bar b \ \vec c </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\overrightarrow {a b} \overleftarrow {c d} \widehat {d e f}</code></td> | ||
+ | <td><math> \overrightarrow {a b} \overleftarrow {c d} \widehat {d e f} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\overline {g h i} \underline {j k l}</code></td> | ||
+ | <td><math> \overline {g h i} \underline {j k l} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Flechas</td> | ||
+ | <td><code>A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C</code></td> | ||
+ | <td><math> A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Llaves superiores</td> | ||
+ | <td><code>\overbrace{ 1+2+ \cdots+100 } ^ {5050}</code></td> | ||
+ | <td><math> \overbrace{ 1+2+ \cdots+100 } ^ {5050} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Llaves inferiores</td> | ||
+ | <td><code>\underbrace { a+b+ \cdots+z }_{26}</code></td> | ||
+ | <td><math> \underbrace { a+b+ \cdots+z }_{26} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Sumatorios</td> | ||
+ | <td><code>\sum_{k=1}^N k^2</code></td> | ||
+ | <td><math> \sum_{k=1}^N k^2 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Productorio</td> | ||
+ | <td><code>\prod_{i=1}^N x_i</code></td> | ||
+ | <td><math> \prod_{i=1}^N x_i </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Coproducto</td> | ||
+ | <td><code>\coprod_{i=1}^N x_i</code></td> | ||
+ | <td><math> \coprod_{i=1}^N x_i </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Límite</td> | ||
+ | <td><code>\lim_{n \to \infty}x_n</code></td> | ||
+ | <td><math> \lim_{n \to \infty}x_n </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Integral</td> | ||
+ | <td><code>\int_{-N}^{N} e^x\, dx</code></td> | ||
+ | <td ><math>\int_{-N}^{N} e^x\, dx</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Integral doble</td> | ||
+ | <td><code>\iint_{D}^{W} \, dx\,dy</code></td> | ||
+ | <td><math> \iint_{D}^{W} \, dx\,dy </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Integral triple</td> | ||
+ | <td><code>\iiint_{E}^{V} \, dx\,dy\,dz</code></td> | ||
+ | <td><math> \iiint_{E}^{V} \, dx\,dy\,dz </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Integral de línea</td> | ||
+ | <td><code>\oint_{C} x^3\, dx + 4y^2\, dy</code></td> | ||
+ | <td><math> \oint_{C} x^3\, dx + 4y^2\, dy </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Intersecciones</td> | ||
+ | <td><code>\bigcap_1^{n} p</code></td> | ||
+ | <td><math> \bigcap_1^{n} p </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Uniones</td> | ||
+ | <td><code>\bigcup_1^{k} p</code></td> | ||
+ | <td><math> \bigcup_1^{k} p </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | <h3>Fracciones, matrices, multilíneas</h3> | ||
+ | |||
+ | <table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0"> | ||
+ | <tr> | ||
+ | <th> </th> | ||
+ | <th>Sintaxis</th> | ||
+ | <th>Cómo se verá</th> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Fracciones</td> | ||
+ | <td><code>\frac{2}{4}=0.5</code></td> | ||
+ | <td><math>\frac{2}{4}=0.5</math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Coeficiente binomial</td> | ||
+ | <td><code>\binom{n}{k}</code></td> | ||
+ | <td><math>\binom{n}{k}</math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td rowspan="7">Matrices</td> | ||
+ | <td>\begin{matrix}<br />x & y \\<br />z & v<br />\end{matrix}</td> | ||
+ | <td><math> \begin{matrix} x & y \\ z & v \end{matrix} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>\begin{vmatrix}<br />x & y \\<br />z & v<br />\end{vmatrix}</td> | ||
+ | <td><math> \begin{vmatrix} x & y \\ z & v \end{vmatrix} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>\begin{Vmatrix<br />x & y \\<br />z & v<br />\end{Vmatrix}</td> | ||
+ | <td><math> \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>\begin{bmatrix}<br />0 & \cdots & 0 \\<br />\vdots & \ddots & \vdots \\<br />0 & \cdots & 0<br />\end{bmatrix}</td> | ||
+ | <td><math> \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>\begin{Bmatrix}<br />x & y \\<br />z & v<br />\end{Bmatrix}</td> | ||
+ | <td><math> \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>\begin{pmatrix}<br />x & y \\<br />z & v <br />\end{pmatrix}</td> | ||
+ | <td><math> \begin{pmatrix} x & y \\ z & v \end{pmatrix} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>\bigl( \begin{smallmatrix}<br />a&b\\ c&d<br />\end{smallmatrix} \bigr)</td> | ||
+ | <td><math> \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Distinción de casos</td> | ||
+ | <td>f(n) =<br />\begin{cases}<br />n/2, & \mbox{if }n\mbox{ is even} \\<br />3n+1, & \mbox{if }n\mbox{ is odd}<br />\end{cases}</td> | ||
+ | <td><math> f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} </math> </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td rowspan="2">Ecuaciones multilínea (se debe definir el número de columnas con {lcl})</td> | ||
+ | <td>\begin{array}{lcl}<br />z & = & a \\<br />f(x,y,z) & = & x + y + z<br />\end{array}</td> | ||
+ | <td><math> \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>\begin{array}{lclcl}<br />z & = & a & = & \sqrt 2\\<br />f(x,y,z) & = & x + y + z & = & t^2\\<br />f(z) & = & x+y & = & 2 \pi<br />\end{array}</td> | ||
+ | <td><math> \begin{array}{lclcl} z & = & a & = & \sqrt 2\\ f(x,y,z) & = & x + y + z & = & t^2\\ f(z) & = & x+y & = & 2 \pi \end{array} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Romper largas expresiones para hacer más legible el código</td> | ||
+ | <td><math>f(x) \,\!</math><br /><math>= \sum_{n=0}^\infty a_n x^n </math><br /><math>= a_0+a_1x+a_2x^2+\cdots</math></td> | ||
+ | <td> | ||
+ | <math> f(x) \,\! </math> | ||
+ | <math> = \sum_{n=0}^ \infty a_n x^n </math> | ||
+ | <math> = a_0+a_1x+a_2x^2+ \cdots </math> | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Ecuaciones simultáneas</td> | ||
+ | <td>\begin{cases}<br />3x + 5y + z \\<br />7x - 2y + 4z \\<br />-6x + 3y + 2z<br />\end{cases}</td> | ||
+ | <td><math> \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | <h3>Alfabetos</h3> | ||
+ | |||
+ | <table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0"> | ||
+ | <tr> | ||
+ | <th colspan="2">Alfabeto griego</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code> \Delta \Theta \Lambda</code></td> | ||
+ | <td><math> \Delta \Theta \Lambda </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\Xi \Pi \Sigma</code></td> | ||
+ | <td><math>\Xi \Pi \Sigma </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\Upsilon \Phi \Psi \Omega</code></td> | ||
+ | <td><math> \Upsilon \Phi \Psi \Omega </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\alpha \beta \gamma \delta \epsilon \zeta</code></td> | ||
+ | <td><math> \alpha \beta \gamma \delta \epsilon \zeta </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\eta \theta \iota \kappa \lambda \mu</code></td> | ||
+ | <td><math> \eta \theta \iota \kappa \lambda \mu </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\nu \xi \pi \rho \sigma \tau</code></td> | ||
+ | <td><math> \nu \xi \pi \rho \sigma \tau </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\upsilon \phi \chi \psi \omega</code></td> | ||
+ | <td><math> \upsilon \phi \chi \psi \omega </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\varepsilon \digamma \vartheta \varkappa</code></td> | ||
+ | <td><math> \varepsilon \digamma \vartheta \varkappa </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><code>\varpi \varrho \varsigma \varphi</code></td> | ||
+ | <td><math> \varpi \varrho \varsigma \varphi </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | <h3>Añadiendo paréntesis a grandes expresiones</h3> | ||
+ | |||
+ | <table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0"> | ||
+ | <tr> | ||
+ | <th> </th> | ||
+ | <th>Sintaxis</th> | ||
+ | <th>Cómo se verá</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Mal</td> | ||
+ | <td> ( \frac{1}{2} )</td> | ||
+ | <td><math> ( \frac{1}{2} ) </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Bien</td> | ||
+ | <td> \left ( \frac{1}{2} \right )</td> | ||
+ | <td><math> \left ( \frac{1} {2} \right ) </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | <table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0"> | ||
+ | <tr> | ||
+ | <th> </th> | ||
+ | <th>Sintaxis</th> | ||
+ | <th>Cómo se verá</th> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Paréntesis</td> | ||
+ | <td>\left ( \frac{a}{b} \right )</td> | ||
+ | <td><math> \left ( \frac{a}{b} \right ) </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Corchetes</td> | ||
+ | <td>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</td> | ||
+ | <td><math> \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Llaves</td> | ||
+ | <td>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</td> | ||
+ | <td><math> \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Barras y dobles barras</td> | ||
+ | <td>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</td> | ||
+ | <td><math> \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Barras invertidas</td> | ||
+ | <td>\left / \frac{a}{b} \right \backslash</td> | ||
+ | <td><math> \left / \frac{a}{b} \right \backslash </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Flechas arriba y abajo</td> | ||
+ | <td>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</td> | ||
+ | <td><math> \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Los delimitadores pueden mezclarse</td> | ||
+ | <td>\left [ 0,1 \right )</td> | ||
+ | <td><math> \left [ 0,1 \right ) </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Usa \left. y \right. si no quieres que un delimitador aparezca</td> | ||
+ | <td>\left . \frac{A}{B} \right \} \to X</td> | ||
+ | <td><math> \left . \frac{A}{B} \right \} \to X </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td rowspan="5">Tamaño de los delimitadores</td> | ||
+ | <td>\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]</td> | ||
+ | <td><math> \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big] </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</td> | ||
+ | <td><math> \big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</td> | ||
+ | <td><math> \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</td> | ||
+ | <td><math> \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</td> | ||
+ | <td><math> \big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | <h3>Espaciado</h3> | ||
+ | |||
+ | Nota: TeX elimina los espacios automáticamente, pero puedes controlarlos manualmente. | ||
+ | |||
+ | <table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0"> | ||
+ | <tr> | ||
+ | <th> </th> | ||
+ | <th>Sintaxis</th> | ||
+ | <th>Cómo se verá</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Espacio en blanco</td> | ||
+ | <td>a\ b</td> | ||
+ | <td><math> a\ b </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | <h3>Ejemplos</h3> | ||
+ | |||
+ | <table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0"> | ||
+ | <tr> | ||
+ | <td>Polinomio cuadrático</td> | ||
+ | <td><code>ax^2 + bx + c = 0\,\!</code></td> | ||
+ | <td><math> ax^2 + bx + c = 0\,\! </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Fórmula cuadrática</td> | ||
+ | <td><code>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</code></td> | ||
+ | <td><math> x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td rowspan="2">Paréntesis altos y fracciones</td> | ||
+ | <td><code>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</code></td> | ||
+ | <td><math> 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right) </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><code>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</code></td> | ||
+ | <td><math> S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Integrales</td> | ||
+ | <td><code>\int_a^x \,dy = \int_a^x f(y) </code></td> | ||
+ | <td><math> \int_a^x \,dy = \int_a^x f(y) </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Sumatorios</td> | ||
+ | <td><code>\sum_{n=1}^\infty\frac{m^2\,n}{3^m}</code></td> | ||
+ | <td><math> \sum_{n=1}^\infty\frac{m^2\,n}{3^m} </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Ecuaciones diferenciales</td> | ||
+ | <td><code>u'' + p(x)u' = f(x),\quad x>a</code></td> | ||
+ | <td><math> u'' + p(x)u' = f(x),\quad x>a </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Límites</td> | ||
+ | <td><code>\lim_{z\rightarrow z_0} f(z)=f(z_0)</code></td> | ||
+ | <td><math> \lim_{z\rightarrow z_0} f(z)=f(z_0) </math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td>Casos</td> | ||
+ | <td><code>f(x) = \begin{cases}<br />1 & -1 \le x < 0 \\<br />\frac{1}{2} & x = 0 \\<br />1 - x^2 & 0 < x\le 1<br />\end{cases}</code></td> | ||
+ | <td><math> f(x) = \begin {cases} | ||
+ | 1 & -1 \le x < 0 \\ | ||
+ | \frac{1}{2} & x = 0 \\ | ||
+ | 1 - x^2 & 0 < x\le 1 | ||
+ | \end {cases} </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | Para más información visita la ayuda de TeX en [http://es.wikipedia.org/wiki/Wikipedia:Usando_TeX Wikipedia] | ||
+ | |||
+ | [[Categoría:Ayuda]] |
Revisión actual
A continuación ofrecemos un cuadro de referencia con nociones básicas y ejemplos que sirven de ayuda para escribir fórmulas utilizando el código LaTeX.
Tabla de contenidos |
Básicos
Acentos | |
---|---|
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} |
|
\check{a} \bar{a} \ddot{a} \dot{a} |
|
Funciones estándar | |
\sin a \cos b \tan c |
|
\sec d \csc e \cot f |
|
\arcsin h \arccos i \arctan j |
|
\sinh k \cosh l \tanh m \coth n |
|
\lim u \limsup v \liminf w \min x \max y |
|
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g |
|
Derivadas | |
\nabla \partial x dx \dot x \ddot y |
|
Conjuntos | |
\forall \exists \emptyset \varnothing |
|
\in \ni \notin \subset \subseteq \supset \supseteq |
|
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus |
|
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup |
|
Operadores | |
+ \oplus \bigoplus \pm \mp - |
|
\times \otimes \bigotimes \cdot \circ \bullet \bigodot |
|
\star * / \div \frac{1}{2} |
|
Lógica | |
\land \wedge \bigwedge \bar{q} \to p |
|
\lor \vee \bigvee \lnot \neg q \And |
|
Raíces | |
\sqrt{2} \sqrt[n]{x} |
|
Relaciones | |
\sim \approx \simeq \cong |
|
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto |
|
Geometría | |
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ |
|
Flechas | |
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow |
|
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft |
|
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow |
|
\Longrightarrow \Uparrow \Downarrow \Updownarrow |
|
\nLeftrightarrow \longleftrightarrow |
|
Especial | |
\eth \S \P \% \dagger \ddagger \ldots \cdots |
|
\smile \frown \wr \triangleleft \triangleright \infty \bot \top |
|
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar |
|
Otros | |
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown |
|
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge |
|
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes |
|
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant |
|
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot |
|
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox |
|
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot |
|
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq |
|
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork |
|
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq |
|
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid |
|
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr |
|
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq |
|
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq |
|
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq |
Subíndices, superíndices, integrales
Sintaxis | Cómo se verá | |
---|---|---|
Superíndice | a^2 |
|
Subíndice | a_2 |
|
Agrupar | a^{2+2} |
|
a_{i,j} |
||
Combinar superindice y subíndice | x_2^3 |
|
Superíndices y subíndices, anteriores, posteriores, arriba y abajo | \sideset {_1^2} {_3^4} \prod_a^b |
|
{}_1^2 \! \Omega_3^4 |
||
Apilar | \overset { \alpha} { \omega} |
|
\overset { \alpha} { \underset { \gamma} { \omega}} |
||
\stackrel { \alpha} { \omega} |
||
Derivadas | x', y, f', f |
|
Subrayado, línea superior, vectores | \hat a \ \bar b \ \vec c |
|
\overrightarrow {a b} \overleftarrow {c d} \widehat {d e f} |
||
\overline {g h i} \underline {j k l} |
||
Flechas | A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C |
|
Llaves superiores | \overbrace{ 1+2+ \cdots+100 } ^ {5050} |
|
Llaves inferiores | \underbrace { a+b+ \cdots+z }_{26} |
|
Sumatorios | \sum_{k=1}^N k^2 |
|
Productorio | \prod_{i=1}^N x_i |
|
Coproducto | \coprod_{i=1}^N x_i |
|
Límite | \lim_{n \to \infty}x_n |
|
Integral | \int_{-N}^{N} e^x\, dx |
|
Integral doble | \iint_{D}^{W} \, dx\,dy |
|
Integral triple | \iiint_{E}^{V} \, dx\,dy\,dz |
|
Integral de línea | \oint_{C} x^3\, dx + 4y^2\, dy |
|
Intersecciones | \bigcap_1^{n} p |
|
Uniones | \bigcup_1^{k} p |
Fracciones, matrices, multilíneas
Sintaxis | Cómo se verá | |
---|---|---|
Fracciones | \frac{2}{4}=0.5 |
|
Coeficiente binomial | \binom{n}{k} |
|
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
|
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
||
\begin{Vmatrix x & y \\ z & v \end{Vmatrix} |
||
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
||
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
||
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
||
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
||
Distinción de casos | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
|
Ecuaciones multilínea (se debe definir el número de columnas con {lcl}) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
|
\begin{array}{lclcl} z & = & a & = & \sqrt 2\\ f(x,y,z) & = & x + y + z & = & t^2\\ f(z) & = & x+y & = & 2 \pi \end{array} |
||
Romper largas expresiones para hacer más legible el código | <math>f(x) \,\!</math> <math>= \sum_{n=0}^\infty a_n x^n </math> <math>= a_0+a_1x+a_2x^2+\cdots</math> |
|
Ecuaciones simultáneas | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} |
Alfabetos
Alfabeto griego | |
---|---|
\Delta \Theta \Lambda |
|
\Xi \Pi \Sigma |
|
\Upsilon \Phi \Psi \Omega |
|
\alpha \beta \gamma \delta \epsilon \zeta |
|
\eta \theta \iota \kappa \lambda \mu |
|
\nu \xi \pi \rho \sigma \tau |
|
\upsilon \phi \chi \psi \omega |
|
\varepsilon \digamma \vartheta \varkappa |
|
\varpi \varrho \varsigma \varphi |
Añadiendo paréntesis a grandes expresiones
Sintaxis | Cómo se verá | |
---|---|---|
Mal | ( \frac{1}{2} ) | |
Bien | \left ( \frac{1}{2} \right ) |
Sintaxis | Cómo se verá | |
---|---|---|
Paréntesis | \left ( \frac{a}{b} \right ) | |
Corchetes | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack | |
Llaves | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace | |
Barras y dobles barras | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| | |
Barras invertidas | \left / \frac{a}{b} \right \backslash | |
Flechas arriba y abajo | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow | |
Los delimitadores pueden mezclarse | \left [ 0,1 \right ) | |
Usa \left. y \right. si no quieres que un delimitador aparezca | \left . \frac{A}{B} \right \} \to X | |
Tamaño de los delimitadores | \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big] | |
\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle | ||
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow | ||
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow | ||
\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash |
Espaciado
Nota: TeX elimina los espacios automáticamente, pero puedes controlarlos manualmente.
Sintaxis | Cómo se verá | |
---|---|---|
Espacio en blanco | a\ b |
Ejemplos
Polinomio cuadrático | ax^2 + bx + c = 0\,\! |
|
Fórmula cuadrática | x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} |
|
Paréntesis altos y fracciones | 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right) |
|
S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2} |
||
Integrales | \int_a^x \,dy = \int_a^x f(y) |
|
Sumatorios | \sum_{n=1}^\infty\frac{m^2\,n}{3^m} |
|
Ecuaciones diferenciales | u + p(x)u' = f(x),\quad x>a |
|
Límites | \lim_{z\rightarrow z_0} f(z)=f(z_0) |
|
Casos | f(x) = \begin{cases} |
Para más información visita la ayuda de TeX en Wikipedia
Tweet