Introducción a la Inmunología
De Wikillerato
(5 ediciones intermedias no se muestran.) | |||
Línea 15: | Línea 15: | ||
El primer abordaje plenamente científico de problemas inmunológicos se debió, a '''Louis Pasteur'''[http://es.wikipedia.org/wiki/Louis_Pasteur]. Estudiando la bacteria responsable del cólera aviar (más tarde conocida como ''Pasteurella aviseptica''), observó que la inoculación en gallinas de cultivos viejos, poco virulentos, las protegía de contraer la enfermedad cuando posteriormente eran inyectadas con cultivos normales virulentos. De esta forma se obtuvo la primera vacuna a base de microorganismos atenuados. Fue precisamente Pasteur quien dio carta de naturaleza al término vacuna, en honor del trabajo pionero de '''Edward Jenner''' [http://es.wikipedia.org/wiki/Edward_Jenner]. En los años siguientes Pasteur abordó la inmunización artificial para otras enfermedades; concretamente, estableció de forma clara que cultivos de ''Bacillus anthracis'' atenuados por incubación a 45 grados C conferían inmunidad a ovejas expuestas a contagio por carbunclo. Una famosa demostración pública de la bondad del método de Pasteur tuvo lugar en Pouilly le Fort, el dos de junio de 1881, cuando ante un gentío expectante se pudo comprobar la muerte del grupo control de ovejas y vacas no inoculadas, frente a la supervivencia de los animales vacunados. Años después, abordaría la inmunización contra la rabia, enfermedad de la que se desconocía el agente causal. Pasteur observó que éste perdía virulencia cuando se mantenían al aire durante cierto tiempo extractos medulares de animales infectados, por lo que dichos extractos se podían emplear eficazmente como vacunas. Realizó la primera vacunación antirrábica en humanos el 6 de julio de 1885, sobre el niño Joseph Meister, que había sido mordido gravemente por un perro rabioso. A este caso siguieron otros muchos, lo que valió a Pasteur reconocimiento universal y supuso el apoyo definitivo a su método de inmunización, que abría perspectivas prometedoras de profilaxis ante muchas enfermedades. Estos logros determinaron, en buena medida, la creación del Instituto Pasteur, que muy pronto reunió a un selecto grupo de científicos, que enfocarían sus esfuerzos en diversos aspectos de las inmunizaciones y de sus bases biológicas. A su vez, los norteamericanos Salmon y Smith (1886) perfeccionaron los métodos serológicos de Pasteur, lo que les permitió producir y conservar más fácilmente sueros tipificados contra la peste porcina. | El primer abordaje plenamente científico de problemas inmunológicos se debió, a '''Louis Pasteur'''[http://es.wikipedia.org/wiki/Louis_Pasteur]. Estudiando la bacteria responsable del cólera aviar (más tarde conocida como ''Pasteurella aviseptica''), observó que la inoculación en gallinas de cultivos viejos, poco virulentos, las protegía de contraer la enfermedad cuando posteriormente eran inyectadas con cultivos normales virulentos. De esta forma se obtuvo la primera vacuna a base de microorganismos atenuados. Fue precisamente Pasteur quien dio carta de naturaleza al término vacuna, en honor del trabajo pionero de '''Edward Jenner''' [http://es.wikipedia.org/wiki/Edward_Jenner]. En los años siguientes Pasteur abordó la inmunización artificial para otras enfermedades; concretamente, estableció de forma clara que cultivos de ''Bacillus anthracis'' atenuados por incubación a 45 grados C conferían inmunidad a ovejas expuestas a contagio por carbunclo. Una famosa demostración pública de la bondad del método de Pasteur tuvo lugar en Pouilly le Fort, el dos de junio de 1881, cuando ante un gentío expectante se pudo comprobar la muerte del grupo control de ovejas y vacas no inoculadas, frente a la supervivencia de los animales vacunados. Años después, abordaría la inmunización contra la rabia, enfermedad de la que se desconocía el agente causal. Pasteur observó que éste perdía virulencia cuando se mantenían al aire durante cierto tiempo extractos medulares de animales infectados, por lo que dichos extractos se podían emplear eficazmente como vacunas. Realizó la primera vacunación antirrábica en humanos el 6 de julio de 1885, sobre el niño Joseph Meister, que había sido mordido gravemente por un perro rabioso. A este caso siguieron otros muchos, lo que valió a Pasteur reconocimiento universal y supuso el apoyo definitivo a su método de inmunización, que abría perspectivas prometedoras de profilaxis ante muchas enfermedades. Estos logros determinaron, en buena medida, la creación del Instituto Pasteur, que muy pronto reunió a un selecto grupo de científicos, que enfocarían sus esfuerzos en diversos aspectos de las inmunizaciones y de sus bases biológicas. A su vez, los norteamericanos Salmon y Smith (1886) perfeccionaron los métodos serológicos de Pasteur, lo que les permitió producir y conservar más fácilmente sueros tipificados contra la peste porcina. | ||
- | [[ | + | [[Image:Luis_Pasteur.jpg|Wikillerato]] Louis Pasteur en su labotratorio. Retrato por Edelfelt. |
A finales del siglo XIX existían dos teorías opuestas sobre los fundamentos biológicos de las respuestas inmunes. Por un lado, el zoólogo ruso '''Ilya Ilich Mechnikov''' [http://en.wikipedia.org/wiki/Ilya_Ilyich_Mechnikov](1845-1916), que había realizado observaciones sobre la fagocitosis en estrellas de mar y pulgas de agua, estableció, a partir de 1883, su "Teoría de los fagocitos", tras estudiar fenómenos de englobamiento de partículas extrañas por los leucocitos de conejo y de humanos. Informó que existían fenómenos de eliminación de agentes patógenos por medio de "células devoradoras" (fagocitos) que actuaban en animales vacunados contra el carbunco, y explicó la inmunización como una "habituación" del hospedador a la fagocitosis. Más tarde, ya integrado en el Instituto Pasteur, propugnó la idea de que los fagocitos segregan enzimas específicos, análogos a los "fermentos" digestivos (1900). Esta teoría de los fagocitos constituyó el núcleo de la teoría de la inmunidad celular, de modo que la fagocitosis se consideraba como la base principal del sistema de defensa inmune del organismo. | A finales del siglo XIX existían dos teorías opuestas sobre los fundamentos biológicos de las respuestas inmunes. Por un lado, el zoólogo ruso '''Ilya Ilich Mechnikov''' [http://en.wikipedia.org/wiki/Ilya_Ilyich_Mechnikov](1845-1916), que había realizado observaciones sobre la fagocitosis en estrellas de mar y pulgas de agua, estableció, a partir de 1883, su "Teoría de los fagocitos", tras estudiar fenómenos de englobamiento de partículas extrañas por los leucocitos de conejo y de humanos. Informó que existían fenómenos de eliminación de agentes patógenos por medio de "células devoradoras" (fagocitos) que actuaban en animales vacunados contra el carbunco, y explicó la inmunización como una "habituación" del hospedador a la fagocitosis. Más tarde, ya integrado en el Instituto Pasteur, propugnó la idea de que los fagocitos segregan enzimas específicos, análogos a los "fermentos" digestivos (1900). Esta teoría de los fagocitos constituyó el núcleo de la teoría de la inmunidad celular, de modo que la fagocitosis se consideraba como la base principal del sistema de defensa inmune del organismo. | ||
Línea 21: | Línea 21: | ||
Por otro lado, la escuela alemana de '''Robert Koch''' [http://en.wikipedia.org/wiki/Robert_Koch] hacía hincapié en la importancia de los mecanismos humorales (teoría de la inmunidad humoral). '''Emil von Behring''' [http://es.wikipedia.org/wiki/Emil_Adolf_von_Behring] (1854-1917) y '''Shibasaburo Kitasato''' [http://es.wikipedia.org/wiki/Kitasato_Shibasabur%C5%8D] (1856-1931), a resultas de sus trabajos sobre las toxinas del tétanos y de la difteria, observaron que el cuerpo produce "antitoxinas" (más tarde conocidas como anticuerpos) que tendían a neutralizar las toxinas de forma específica, y evidenciaron que el suero que contiene antitoxinas es capaz de proteger a animales expuestos a una dosis letal de la toxina correspondiente (1890). La intervención de '''Paul Ehrlich''' [http://es.wikipedia.org/wiki/Paul_Ehrlich] permitió obtener sueros de caballo con niveles de anticuerpos suficientemente altos como para conferir una protección eficaz, e igualmente se pudo disponer de un ensayo para cuantificar la "antitoxina" presente en suero. Ehrlich dirigió desde 1896 el Instituto Estatal para la Investigación y Comprobación de Sueros, en Steglitz, cerca de Berlín, y, a partir de 1899, estuvo al frente del mejor equipado Instituto de Terapia Experimental, en Frankfurt. Durante este último periodo de su vida, Ehrlich produce una impresionante obra científica, en la que va ahondando en la comprensión de la inmunidad humoral. En 1900 da a luz su "Teoría de las cadenas laterales", en la que formula una explicación de la formación y especificidad de los anticuerpos, estableciendo una base química para la interacción de éstos con los antígenos. Por su lado, '''R. Kraus''' visualiza por primera vez, en 1897, una reacción antígeno-anticuerpo, al observar el enturbiamento de un filtrado bacteriano al mezclarlo con un suero inmune específico (antisuero). Durante cierto tiempo se creyó que el suero posee distintas actividades inmunes humorales, cada una denominada de forma diferente: antitoxina (neutralización de toxinas), precipitina (precipitación de toxinas), aglutinina (aglutinación de bacterias) y bacteriolisina (lisis de bacterias). Hubo que esperara a los años 30 para caer en la cuenta que todas estas actividades se debían a un único tipo de entidad, que fue bautizado como anticuerpo. | Por otro lado, la escuela alemana de '''Robert Koch''' [http://en.wikipedia.org/wiki/Robert_Koch] hacía hincapié en la importancia de los mecanismos humorales (teoría de la inmunidad humoral). '''Emil von Behring''' [http://es.wikipedia.org/wiki/Emil_Adolf_von_Behring] (1854-1917) y '''Shibasaburo Kitasato''' [http://es.wikipedia.org/wiki/Kitasato_Shibasabur%C5%8D] (1856-1931), a resultas de sus trabajos sobre las toxinas del tétanos y de la difteria, observaron que el cuerpo produce "antitoxinas" (más tarde conocidas como anticuerpos) que tendían a neutralizar las toxinas de forma específica, y evidenciaron que el suero que contiene antitoxinas es capaz de proteger a animales expuestos a una dosis letal de la toxina correspondiente (1890). La intervención de '''Paul Ehrlich''' [http://es.wikipedia.org/wiki/Paul_Ehrlich] permitió obtener sueros de caballo con niveles de anticuerpos suficientemente altos como para conferir una protección eficaz, e igualmente se pudo disponer de un ensayo para cuantificar la "antitoxina" presente en suero. Ehrlich dirigió desde 1896 el Instituto Estatal para la Investigación y Comprobación de Sueros, en Steglitz, cerca de Berlín, y, a partir de 1899, estuvo al frente del mejor equipado Instituto de Terapia Experimental, en Frankfurt. Durante este último periodo de su vida, Ehrlich produce una impresionante obra científica, en la que va ahondando en la comprensión de la inmunidad humoral. En 1900 da a luz su "Teoría de las cadenas laterales", en la que formula una explicación de la formación y especificidad de los anticuerpos, estableciendo una base química para la interacción de éstos con los antígenos. Por su lado, '''R. Kraus''' visualiza por primera vez, en 1897, una reacción antígeno-anticuerpo, al observar el enturbiamento de un filtrado bacteriano al mezclarlo con un suero inmune específico (antisuero). Durante cierto tiempo se creyó que el suero posee distintas actividades inmunes humorales, cada una denominada de forma diferente: antitoxina (neutralización de toxinas), precipitina (precipitación de toxinas), aglutinina (aglutinación de bacterias) y bacteriolisina (lisis de bacterias). Hubo que esperara a los años 30 para caer en la cuenta que todas estas actividades se debían a un único tipo de entidad, que fue bautizado como anticuerpo. | ||
- | En 1898 '''Jules Bordet''' (1870-1961) descubre otro componente sérico relacionado con la respuesta inmunitaria, al que bautiza como "alexina", caracterizado, frente al anticuerpo, por su termolabilidad e inespecificidad. (Más tarde se impondría el nombre de complemento, propuesto por Ehrlich). El mismo Bordet desarrolló, en 1901, el primer sistema diagnóstico para la detección de anticuerpos, basado en la fijación del complemento, y que inició una larga andadura, que llega a nuestros días. | + | En 1898 '''Jules Bordet''' ([[1870]]-1961) descubre otro componente sérico relacionado con la respuesta inmunitaria, al que bautiza como "alexina", caracterizado, frente al anticuerpo, por su termolabilidad e inespecificidad. (Más tarde se impondría el nombre de complemento, propuesto por Ehrlich). El mismo Bordet desarrolló, en 1901, el primer sistema diagnóstico para la detección de anticuerpos, basado en la fijación del complemento, y que inició una larga andadura, que llega a nuestros días. |
La conciliación de las dos teorías (celular y humoral) se inició con los trabajos de '''Almorth Wrigth y Stewart R. Douglas''', quienes en 1904 descubren las opsoninas, anticuerpos presentes en los sueros de animales inmunizados y que, tras unirse a la superficie bacteriana, incrementan la capacidad fagocítica de los leucocitos. En los años 50 se reconoce que los linfocitos son las células responsables de los dos componentes, humoral y celular, de la inmunidad. | La conciliación de las dos teorías (celular y humoral) se inició con los trabajos de '''Almorth Wrigth y Stewart R. Douglas''', quienes en 1904 descubren las opsoninas, anticuerpos presentes en los sueros de animales inmunizados y que, tras unirse a la superficie bacteriana, incrementan la capacidad fagocítica de los leucocitos. En los años 50 se reconoce que los linfocitos son las células responsables de los dos componentes, humoral y celular, de la inmunidad. | ||
Línea 43: | Línea 43: | ||
Los avances en Inmunología durante los últimos años han sido espectaculares, consolidando a ésta como ciencia independiente, con su conjunto propio de paradigmas, ya relativamente escindida de su tronco originario microbiológico. Entre los hitos recientes hay que citar la técnica de producción de anticuerpos monoclonales a partir de hibridomas, desarrollada originalmente por '''Cesar Milstein y Georges Kohler''' en 1975, y que presenta una enorme gama de aplicaciones en biomedicina, o el desentrañamiento de los fenómenos de reorganización genética responsables de la expresión de los genes de inmunoglobulinas, por '''Susumu Tonegawa'''. | Los avances en Inmunología durante los últimos años han sido espectaculares, consolidando a ésta como ciencia independiente, con su conjunto propio de paradigmas, ya relativamente escindida de su tronco originario microbiológico. Entre los hitos recientes hay que citar la técnica de producción de anticuerpos monoclonales a partir de hibridomas, desarrollada originalmente por '''Cesar Milstein y Georges Kohler''' en 1975, y que presenta una enorme gama de aplicaciones en biomedicina, o el desentrañamiento de los fenómenos de reorganización genética responsables de la expresión de los genes de inmunoglobulinas, por '''Susumu Tonegawa'''. | ||
- | + | [[Categoría: Biología]] | |
- | + | [[Categoría: Inmunología]] | |
- | + | ||
- | + |
Revisión actual
Los animales superiores son atacados por microorganismos, partículas extrañas y amenazas internas como las células cancerosas. Pero poseen sistemas defensivos frente a estos agentes; dichos mecanismos normalmente son capaces de distinguir lo propio de lo extraño. Aún no se conocen en su totalidad los mecanismos fisiológicos complejos implicados en el sistema inmunológico, pero las investigaciones biomédicas continuan desentrañándolos. La inmunidad no es exclusiva de los animales; de hecho, las plantas y en general todos los organismos tienen sistemas de defensa. Pero la inmunología como ciencia se dedica principalmente al estudio de estos mecanismos en el hombre y los animales superiores. Esta especialidad ha establecido una serie de conceptos que nos serán útiles para entender los procesos de la inmunidad y que se definen a continuación.
- Inmunología: Ciencia biológica que estudia todos los mecanismos fisiológicos de defensa de la integridad biológica del organismo. Dichos mecanismos consisten esencialmente en la identificación de lo extraño y su destrucción. La inmunología también estudia los factores inespecíficos que coadyuvan a los anteriores en sus efectos finales.
- Concepto de inmunidad: Conjunto de mecanismos de defensa de los animales frente a agentes extraños. Se adquiere al nacer, y va madurando y consolidándose durante los primeros años de vida.
- Respuesta inmune: Actuación integrada de un gran número de mecanismos heterogéneos de defensa contra sustancias y agentes extraños. En general, a las sustancias extrañas se las denomina como antígenos, y son ellos los que desencadenan en el organismo una serie de eventos celulares que provocan la producción\n de los mecanismos de defensa. Como veremos, los mecanismos de respuesta tienen una componente celular y otra molecular.
- Inmunidad innata: es una línea de defensa que permite controlar a mayor parte de los agentes patógenos y que es preexistente a la adquirida.
- Inmunidad adquirida : también conocida como adaptativa, suministra una respuesta específica frente a cada agente infeccioso. Posee memoria inmunológica específica, que tiende a evitar que el agente infeccioso provoque enfermedad en una segunda infección. Pero incluso antes de que actúe la inmunidad inespecífica, el organismo posee una serie de barreras naturales que lo protegen de la infección de los agentes patógenos, así como una protección biológica por medio de la microflora (microbiota) natural que posee. Comenzaremos nuestro estudio de la inmunidad precisamente por estas primeras líneas defensivas.
La inmunología es, en la actualidad, una ciencia autónoma y madura, pero sus orígenes han estado estrechamente ligados a la Microbiología. Su objeto consiste en el estudio de las respuestas de defensa que han desarrollado los animales frente a la invasión por microorganismos o partículas extraños, aunque su interés se ha volcado especialmente sobre aquellos mecanismos altamente evolucionados e integrados, dotados de especificidad y de memoria, frente a agentes reconocidos por el cuerpo como no propios, así como de su neutralización y degradación.
Un poco de historia.
El primer abordaje plenamente científico de problemas inmunológicos se debió, a Louis Pasteur[1]. Estudiando la bacteria responsable del cólera aviar (más tarde conocida como Pasteurella aviseptica), observó que la inoculación en gallinas de cultivos viejos, poco virulentos, las protegía de contraer la enfermedad cuando posteriormente eran inyectadas con cultivos normales virulentos. De esta forma se obtuvo la primera vacuna a base de microorganismos atenuados. Fue precisamente Pasteur quien dio carta de naturaleza al término vacuna, en honor del trabajo pionero de Edward Jenner [2]. En los años siguientes Pasteur abordó la inmunización artificial para otras enfermedades; concretamente, estableció de forma clara que cultivos de Bacillus anthracis atenuados por incubación a 45 grados C conferían inmunidad a ovejas expuestas a contagio por carbunclo. Una famosa demostración pública de la bondad del método de Pasteur tuvo lugar en Pouilly le Fort, el dos de junio de 1881, cuando ante un gentío expectante se pudo comprobar la muerte del grupo control de ovejas y vacas no inoculadas, frente a la supervivencia de los animales vacunados. Años después, abordaría la inmunización contra la rabia, enfermedad de la que se desconocía el agente causal. Pasteur observó que éste perdía virulencia cuando se mantenían al aire durante cierto tiempo extractos medulares de animales infectados, por lo que dichos extractos se podían emplear eficazmente como vacunas. Realizó la primera vacunación antirrábica en humanos el 6 de julio de 1885, sobre el niño Joseph Meister, que había sido mordido gravemente por un perro rabioso. A este caso siguieron otros muchos, lo que valió a Pasteur reconocimiento universal y supuso el apoyo definitivo a su método de inmunización, que abría perspectivas prometedoras de profilaxis ante muchas enfermedades. Estos logros determinaron, en buena medida, la creación del Instituto Pasteur, que muy pronto reunió a un selecto grupo de científicos, que enfocarían sus esfuerzos en diversos aspectos de las inmunizaciones y de sus bases biológicas. A su vez, los norteamericanos Salmon y Smith (1886) perfeccionaron los métodos serológicos de Pasteur, lo que les permitió producir y conservar más fácilmente sueros tipificados contra la peste porcina.
Louis Pasteur en su labotratorio. Retrato por Edelfelt.
A finales del siglo XIX existían dos teorías opuestas sobre los fundamentos biológicos de las respuestas inmunes. Por un lado, el zoólogo ruso Ilya Ilich Mechnikov [3](1845-1916), que había realizado observaciones sobre la fagocitosis en estrellas de mar y pulgas de agua, estableció, a partir de 1883, su "Teoría de los fagocitos", tras estudiar fenómenos de englobamiento de partículas extrañas por los leucocitos de conejo y de humanos. Informó que existían fenómenos de eliminación de agentes patógenos por medio de "células devoradoras" (fagocitos) que actuaban en animales vacunados contra el carbunco, y explicó la inmunización como una "habituación" del hospedador a la fagocitosis. Más tarde, ya integrado en el Instituto Pasteur, propugnó la idea de que los fagocitos segregan enzimas específicos, análogos a los "fermentos" digestivos (1900). Esta teoría de los fagocitos constituyó el núcleo de la teoría de la inmunidad celular, de modo que la fagocitosis se consideraba como la base principal del sistema de defensa inmune del organismo.
Por otro lado, la escuela alemana de Robert Koch [4] hacía hincapié en la importancia de los mecanismos humorales (teoría de la inmunidad humoral). Emil von Behring [5] (1854-1917) y Shibasaburo Kitasato [6] (1856-1931), a resultas de sus trabajos sobre las toxinas del tétanos y de la difteria, observaron que el cuerpo produce "antitoxinas" (más tarde conocidas como anticuerpos) que tendían a neutralizar las toxinas de forma específica, y evidenciaron que el suero que contiene antitoxinas es capaz de proteger a animales expuestos a una dosis letal de la toxina correspondiente (1890). La intervención de Paul Ehrlich [7] permitió obtener sueros de caballo con niveles de anticuerpos suficientemente altos como para conferir una protección eficaz, e igualmente se pudo disponer de un ensayo para cuantificar la "antitoxina" presente en suero. Ehrlich dirigió desde 1896 el Instituto Estatal para la Investigación y Comprobación de Sueros, en Steglitz, cerca de Berlín, y, a partir de 1899, estuvo al frente del mejor equipado Instituto de Terapia Experimental, en Frankfurt. Durante este último periodo de su vida, Ehrlich produce una impresionante obra científica, en la que va ahondando en la comprensión de la inmunidad humoral. En 1900 da a luz su "Teoría de las cadenas laterales", en la que formula una explicación de la formación y especificidad de los anticuerpos, estableciendo una base química para la interacción de éstos con los antígenos. Por su lado, R. Kraus visualiza por primera vez, en 1897, una reacción antígeno-anticuerpo, al observar el enturbiamento de un filtrado bacteriano al mezclarlo con un suero inmune específico (antisuero). Durante cierto tiempo se creyó que el suero posee distintas actividades inmunes humorales, cada una denominada de forma diferente: antitoxina (neutralización de toxinas), precipitina (precipitación de toxinas), aglutinina (aglutinación de bacterias) y bacteriolisina (lisis de bacterias). Hubo que esperara a los años 30 para caer en la cuenta que todas estas actividades se debían a un único tipo de entidad, que fue bautizado como anticuerpo.
En 1898 Jules Bordet (1870-1961) descubre otro componente sérico relacionado con la respuesta inmunitaria, al que bautiza como "alexina", caracterizado, frente al anticuerpo, por su termolabilidad e inespecificidad. (Más tarde se impondría el nombre de complemento, propuesto por Ehrlich). El mismo Bordet desarrolló, en 1901, el primer sistema diagnóstico para la detección de anticuerpos, basado en la fijación del complemento, y que inició una larga andadura, que llega a nuestros días.
La conciliación de las dos teorías (celular y humoral) se inició con los trabajos de Almorth Wrigth y Stewart R. Douglas, quienes en 1904 descubren las opsoninas, anticuerpos presentes en los sueros de animales inmunizados y que, tras unirse a la superficie bacteriana, incrementan la capacidad fagocítica de los leucocitos. En los años 50 se reconoce que los linfocitos son las células responsables de los dos componentes, humoral y celular, de la inmunidad.
El área de la inmunopatología inicia su andadura con la descripción del fenómeno de anafilaxia producido por introducción en un animal de un suero de una especie distinta (Portier y Richet, 1902; Arthus, 1903), lo que a su vez abriría la posibilidad de métodos de serodiagnóstico, con aplicaciones múltiples en Medicina, Zoología y otras ciencias biológicas. En 1905 Pirquet sugiere que la enfermedad del suero (un fenómeno de hipersensibilidad) tiene relación directa con la producción de anticuerpos contra el suero inyectado, introduciendo el término de alergia para referirse a la reactividad inmunológica alterada.
La inmunoquímica cobra un gran impulso en las primeras décadas del siglo XX con los trabajos de Karl Landsteiner (1868-1943). Su primera contribución de importancia había sido la descripción, mediante reacciones de aglutinación, del sistema de antígenos naturales (ABC0) de los eritrocitos humanos (1901-1902), completada (en colaboración con Von Dungern y Hirzfeld), con las subdivisiones del grupo A y el estudio de su transmisión hereditaria. Estos trabajos sirvieron de estímulo para avanzar en el desentrañamiento de la especificidad química de los antígenos que determinan la formación de anticuerpos. Landsteiner estudió sistemáticamente las características de inmunogenicidad y especificidad de reacción de antígenos con anticuerpos, valiéndose de la modificación química de antígenos, denominando haptenos a aquellos grupos químicos que por sí mismos no desencadenan formación de anticuerpos, pero sí lo hacen tras ser conjugados a proteínas portadoras.
La cuestión de las reacciones antígeno-anticuerpo se convirtió en otra polémica entre escuelas hasta finales de los años 20. Mientras Ehrlich y sus seguidores mantenían que estas reacciones tienen una base puramente química, Bordet y sus discípulos las explicaban como fenómenos físicos de reacciones entre coloides. La resolución del debate debió aguardar hasta finales de los años 30, al incorporarse avances técnicos como la electroforesis, la cromatografía en papel, la ultracentrifugación y el microscopio electrónico. Heidelberg y Kendall (1936) purificaron anticuerpos a partir de sueros por disociación de precipitados. Tiselius (1939) demostró que los anticuerpos constituyen la fracción gamma-globulínica del suero. Veinte años después R.R. Porter y G.M. Edelman establecen la estructura de las inmunoglobulinas. Durante este lapso de tiempo se descubre que la síntesis de anticuerpos ocurre en las células plasmáticas, aunque éstas no son puestas en relación aún con los linfocitos; durante muchos años se siguió creyendo que los linfocitos eran células pasivas, sin función inmune. Por aquella época se describe, también, la diversidad de inmunoglobulinas, llegándose al establecimiento de una nomenclatura. Enseguida comienza la era de los múltiples experimentos sobre timectomía en ratones neonatos y sobre bursectomía en aves, así como los de reconstitución de animales irradiados, con timocitos y células de la medula ósea, y que permiten afirmar el papel esencial de los linfocitos, encuadrarlos en tipos funcionales T y B, y relacionarlos con las respuestas inmunes celular y humoral, respectivamente.
Una importante faceta de la inmunología de la primera mitad del siglo XX fue la obtención de vacunas. Se lograron toxoides inmunogénicos a partir de toxinas bacterianas, en muchos casos por tratamiento con formol: toxoide tetánico (Eisler y Lowenstein, 1915) y toxoide diftérico (Glenny, 1921). En 1922 se desarrolla la vacuna BCG contra la tuberculosis, haciendo uso de una cepa atenuada de Mycobacterium tuberculosis, el bacilo de Calmette-Guérin. La utilización de coadyuvantes se inicia en 1916, por LeMoignic y Piroy.
La inmunogenética nace cuando Bernstein describe en 1921 el modelo de transmisión hereditaria de los cuatro grupos sanguíneos principales, basándose en el análisis estadístico de sus proporciones relativas, y con el descubrimiento por Landsteiner y Levène (1927) de los nuevos sistemas MN y P. Los experimentos de transfusiones sanguíneas interespecíficas permitieron distinguir la gran complejidad de los antígenos sanguíneos, explicables según unos 300 alelos múltiples.
Otra de las grandes controversias de los primeros tiempos de la Inmunología se refería al tipo de mecanismos postulados para explicar la especificidad de la reacción antígeno-anticuerpo. Se propusieron dos tipos de teorías: la selectiva y la instructiva. La primera formulación de tipo instructivo se debió a Paul Ehrlich (teoría de las cadenas laterales): suponía que las células inmunes expresan en su superficie una gran variedad de cadenas laterales preformadas; la unión de un agente patógeno determinado con una cadena lateral adecuada sería análoga a la complementariedad entre una llave y su cerradura; dicha interacción originaría la liberación de la cadena lateral, e induciría a la célula a producir y liberar más cadenas laterales de ese tipo concreto. Como se ve, esta teoría supone que la selectividad de la cadena lateral está determinada previamente a la exposición al antígeno, que sólo actúa seleccionando la producción y liberación de la cadena adecuada.
En cambio, durante los años 30 y 40 se daba más crédito a las teorías instructivas. En ellas, el antígeno juega un papel central a la hora de determinar la especificidad del anticuerpo correspondiente. Se sugería que el antígeno serviría como un molde alrededor del cual se plegaría la molécula del anticuerpo, que de esta forma adquiriría su especificidad. Estas teorías, popularizadas sobre todo por Linus Pauling [8] , podían encajar en aquellos tiempos en que aún existían muchas lagunas de los conocimientos, pero en los años 50, tras los nuevos descubrimientos en Biología Molecular (ADN, ARN, código genético, etc.), fueron descartadas.
Una contribución esencial a las ideas sobre el mecanismo de formación de los anticuerpos la realizó el australiano Macfarlane Burnet (1899-1985), al establecer su teoría de la selección clonal; ésta argumenta que cada linfocito B, previamente al contacto con el antígeno, sintetiza un único tipo de anticuerpo, específico para cada antígeno determinante antigénico), de modo que la unión del antígeno causa la proliferación clonal del linfocito B, con la consecuente síntesis incrementada de anticuerpos específicos. Esta teoría resucitó las ideas selectivas, y actualmente es el paradigma aceptado por todos los inmunólogos. Más recientemente Niels Jerne ha realizado nuevas aportaciones y refinamientos a la teoría de la selección clonal, proponiendo un modelo de regulación inmune conocido como teoría de las redes idiotípicas.
Los avances en Inmunología durante los últimos años han sido espectaculares, consolidando a ésta como ciencia independiente, con su conjunto propio de paradigmas, ya relativamente escindida de su tronco originario microbiológico. Entre los hitos recientes hay que citar la técnica de producción de anticuerpos monoclonales a partir de hibridomas, desarrollada originalmente por Cesar Milstein y Georges Kohler en 1975, y que presenta una enorme gama de aplicaciones en biomedicina, o el desentrañamiento de los fenómenos de reorganización genética responsables de la expresión de los genes de inmunoglobulinas, por Susumu Tonegawa.
Tweet