Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Operaciones con sucesos

De Wikillerato

(Diferencias entre revisiones)
m (Revertidas las ediciones realizadas por 80.59.249.17 (Talk); a la última edición de Laura.2mdc)
Línea 7: Línea 7:
A
A
</math>
</math>
-
&nbsp; esta incluido ( contenido ) en otro suceso &nbsp;
+
&nbsp; está incluido (o contenido) en otro suceso &nbsp;
<math>
<math>
B
B
</math>
</math>
-
&nbsp; si todo suceso elemental de &nbsp;
+
&nbsp; si todo suceso elemental perteneciente a &nbsp;
<math>
<math>
A
A
</math>
</math>
-
&nbsp; pertenece también a &nbsp;
+
&nbsp; , pertenece también a &nbsp;
<math>
<math>
B
B
</math>
</math>
-
. Se representa por &nbsp;
+
. Esta inclusión se representa por &nbsp;
<math>
<math>
A \subset B
A \subset B
Línea 27: Línea 27:
<br/>
<br/>
-
Dos suceso &nbsp;
+
Dos sucesos &nbsp;
<math>
<math>
A
A
Línea 36: Línea 36:
</math>
</math>
&nbsp; son iguales si están formados por los mismos sucesos elementales. Se representa
&nbsp; son iguales si están formados por los mismos sucesos elementales. Se representa
-
por &nbsp;
+
por: &nbsp;
<math>
<math>
A = B
A = B
Línea 108: Línea 108:
B
B
</math>
</math>
-
. Se representa por &nbsp;
+
. Este suceso intersección está formado por todos los sucesos elementales que pertenecen a A y a B, al mismo tiempo. Se representa por &nbsp;
<math>
<math>
A \cap B
A \cap B
Línea 118: Línea 118:
A \cup B
A \cup B
</math>
</math>
-
&nbsp; es el suceso imposible, decimos que los sucesos &nbsp;
+
&nbsp; es el suceso imposible, es decir, no hay ningún suceso elemental que pertenezca a A y a B al mismo tiempo, decimos que los sucesos &nbsp;
<math>
<math>
A
A
Línea 126: Línea 126:
B
B
</math>
</math>
-
&nbsp; son incompatibles. Cuando no sucede esto, decimos que &nbsp;
+
&nbsp; son incompatibles. Cuando no sucede ésto, decimos que &nbsp;
<math>
<math>
A
A
Línea 141: Línea 141:
<br/>
<br/>
-
 
Cuando la unión de dos sucesos es el espacio muestral y la intersección de los mismos
Cuando la unión de dos sucesos es el espacio muestral y la intersección de los mismos
-
conjuntos da el conjunto imposible, decimos que ambos sucesos son complementarios o
+
conjuntos da el suceso imposible (conjunto vacío), decimos que ambos sucesos son complementarios o
contrarios.
contrarios.
Línea 158: Línea 157:
A
A
</math>
</math>
-
, &nbsp; y reciprocamente. Se representa por &nbsp;
+
, &nbsp; y viceversa. Se representa por &nbsp;
<math>
<math>
\overline{A}
\overline{A}
Línea 166: Línea 165:
<br/>
<br/>
-
En cualquier experimento aleatorio, todo suceso que se considere tiene su contrario. Las
+
En cualquier espacio muestral, obtenido de la realización de un experimento aleatorio, todo suceso que se considere tiene su contrario. Las
-
propiedades mas significativas de los sucesos contrarios son:
+
propiedades más significativas de los sucesos contrarios son:
<br/>
<br/>
Línea 186: Línea 185:
<br/>
<br/>
-
La union y la interseccion de sucesos verifican las propiedades conmutativa, asociativa,
+
La unión y la intersección de sucesos verifican las propiedades siguientes: conmutativa, asociativa,
idempotente, simplificación, distributiva, existencia de elemento neutro y absorción:
idempotente, simplificación, distributiva, existencia de elemento neutro y absorción:

Revisión de 00:06 19 ago 2011

Tabla de contenidos

Inclusión e igualdad de sucesos


Un suceso   
A
  está incluido (o contenido) en otro suceso   
B
  si todo suceso elemental perteneciente a   
A
  , pertenece también a   
B
. Esta inclusión se representa por   
A \subset B
.


Dos sucesos   
A
  y   
B
  son iguales si están formados por los mismos sucesos elementales. Se representa por:   
A = B
.


Unión de sucesos


Si tenemos dos sucesos   
A
  y   
B
  de un mismo experimento aleatorio, llamamos suceso unión de   
A
  y   
B
  al suceso que se realiza cuando lo hacen   
A
  o   
B
. Se representa por   
A \cup B
.


Intersección de sucesos


Si tenemos dos sucesos   
A
  y   
B
  de un mismo experimento aleatorio, llamamos suceso intersección de   
A
  y   
B
  al suceso que se realiza cuando lo hacen   
A
  y   
B
. Este suceso intersección está formado por todos los sucesos elementales que pertenecen a A y a B, al mismo tiempo. Se representa por   
A \cap B
.

Cuando   
A \cup B 
  es el suceso imposible, es decir, no hay ningún suceso elemental que pertenezca a A y a B al mismo tiempo, decimos que los sucesos   
A
  y   
B
  son incompatibles. Cuando no sucede ésto, decimos que   
A
  y   
B
  son compatibles.


Sucesos contrarios


Cuando la unión de dos sucesos es el espacio muestral y la intersección de los mismos conjuntos da el suceso imposible (conjunto vacío), decimos que ambos sucesos son complementarios o contrarios.

Para un suceso cualquiera   
A
  de un experimento aleatorio, llamamos suceso contrario del suceso   
A
  al suceso que se verifica cuando no se verifica   
A
,   y viceversa. Se representa por   
\overline{A}
.


En cualquier espacio muestral, obtenido de la realización de un experimento aleatorio, todo suceso que se considere tiene su contrario. Las propiedades más significativas de los sucesos contrarios son:



A \cup \overline{A} = E \qquad A \cap \overline{A} = \emptyset \qquad \overline{E} =
\emptyset \qquad \overline{\emptyset} = E


Este artículo o sección necesita una revisión de gramática, ortografía o estilo.
Cuando se haya corregido, borra esta plantilla, por favor.


Algebra de Boole de sucesos


La unión y la intersección de sucesos verifican las propiedades siguientes: conmutativa, asociativa, idempotente, simplificación, distributiva, existencia de elemento neutro y absorción:


Image:tabla2.gif

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.