Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

¿Qué es una matriz?

De Wikillerato

(Diferencias entre revisiones)
Línea 176: Línea 176:
\right)
\right)
</math>
</math>
-
&nbsp;
 
Ejemplo:
Ejemplo:
Línea 200: Línea 199:
1 \times n
1 \times n
</math>
</math>
-
&nbsp;
 
-
 
Ejemplo:
Ejemplo:
Línea 223: Línea 220:
</math>
</math>
&nbsp;
&nbsp;
-
 
Ejemplo:
Ejemplo:
Línea 248: Línea 244:
</math>
</math>
.
.
-
 
Ejemplo:
Ejemplo:
Línea 268: Línea 263:
Matriz triangular superior es toda matriz cuadrada en la que todos los terminos
Matriz triangular superior es toda matriz cuadrada en la que todos los terminos
-
situados por debajo de la diagonal principal son ceros
+
situados por debajo de la diagonal principal son ceros.
-
 
+
Ejemplo:
Ejemplo:
Línea 287: Línea 281:
</math>
</math>
</center>
</center>
 +
 +
<br/>
Matriz triangular inferior es toda matriz cuadrada en la que todos los terminos
Matriz triangular inferior es toda matriz cuadrada en la que todos los terminos
situados por encima de la diagonal principal son ceros
situados por encima de la diagonal principal son ceros
-
 
Ejemplo:
Ejemplo:
Línea 313: Línea 308:
Matriz diagonal es toda matriz cuadrada en la que todos los terminos
Matriz diagonal es toda matriz cuadrada en la que todos los terminos
no situados en la diagonal principal son ceros.
no situados en la diagonal principal son ceros.
-
 
Ejemplo:
Ejemplo:
Línea 336: Línea 330:
Matriz escalar es toda matriz diagonal en la que todos los terminos
Matriz escalar es toda matriz diagonal en la que todos los terminos
de la diagonal principal son iguales.
de la diagonal principal son iguales.
-
 
Ejemplo:
Ejemplo:
Línea 363: Línea 356:
</math>
</math>
&nbsp; .
&nbsp; .
-
 
Ejemplo:
Ejemplo:
Línea 592: Línea 584:
&nbsp; se obtiene multiplicando la fila i-ésima de la primera matriz por la columna
&nbsp; se obtiene multiplicando la fila i-ésima de la primera matriz por la columna
k-ésima de la segunda matriz.
k-ésima de la segunda matriz.
-
 
Ejemplo:
Ejemplo:

Revisión de 01:55 28 nov 2006

Tabla de contenidos

Definición de matriz y tipos de matrices


Una matriz es un cuadrado o tabla de numeros ordenados. Se llama matriz de dimension   
m \times n 
  a un conjunto de números reales dispuestos en   
m
  filas y   
n
  columnas de la siguiente forma  



\left(
</p>
<pre> \begin{array}[c]{cccc}
   a_{11 }& a_{12} & \ldots &  a_{1n}
   \\
   a_{21 }& a_{22} & \ldots &  a_{2n}
   \\
   \vdots & \vdots & \ddots & \vdots
   \\
   a_{m1 }& a_{m2} & \ldots &  a_{mn}
 \end{array}
</pre>
<p>\right)


La matriz   
A 
  se puede designar tambien como   
\quad A = \left( a_{ij} \right) \quad
  donde



\left\{
</p>
<pre> \begin{array}[c]{l}
   i = 1, \, 2, \, \ldots, \, m
   \\
   j = 1, \, 2, \, \ldots, \, n
 \end{array}
</pre>
<p>\right.


Un elemento generico de la matriz se designa por   
a_{ij}
  en el cual el subindice   
i
  representa el numero de fila que ocupa el elemento y el subindice   
j
  el numero de columna.

El conjunto de matrices de dimension   
m \times n
  se denota por:



M_{m \times n}


El conjunto de matrices de dimension   
n \times n
,   tambien llamadas de orden   
n
,   se denota por:



M_n


Las matrices de este conjunto se llaman matrices cuadradas y en ellas definimos:

  • la diagonal principal formada por los elementos de la forma  


a_{ii}
 

  • la diagonal secundaria formada por los elementos de la forma  


a_{ij}
  tales que   
i + j = n + 1



\begin{array}[c]{cc}
</p>
<pre> \left(
   \begin{array}[c]{cccc}
     \mathbf{a_{11}} & a_{12} & a_{13} &  a_{14}
     \\
     a_{21} & \mathbf{a_{22}} & a_{23} &  a_{24}
     \\
     a_{31} & a_{32} & \mathbf{a_{33}} &  a_{34}
     \\
     a_{41} & a_{42} & a_{43} &  \mathbf{a_{44}}
   \end{array}
 \right)
 &
 \left(
   \begin{array}[c]{cccc}
     a_{11} & a_{12} & a_{13} &  \mathbf{a_{14}}
     \\
     a_{21} & a_{22} & \mathbf{a_{23}} &  a_{24}
     \\
     a_{31} & \mathbf{a_{32}} & a_{33} &  a_{34}
     \\
     \mathbf{a_{41}} & a_{42} & a_{43} &  a_{44}
   \end{array}
 \right)
   \\
   & 
   \\
   \makebox{Diagonal principal} & \makebox{Diagonal secundaria}
</pre>
<p>\end{array}


Una matriz rectangular es aquella que tiene distinto número de filas que de columnas   
\left(
</p>
<pre> m \neq n
</pre>
<p>\right)

Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & -1 & ~~0
     \\
     2 & ~~3 & -1
   \end{array}
 \right)
</pre>
<p>


Matriz fila es toda matriz rectangular con una sola fila de dimension   
1 \times n
Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     -1 & 3 & 5 
   \end{array}
 \right)
</pre>
<p>


Matriz columna es toda matriz rectangular con una sola columna de dimension   
m \times 1
  Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{c}
     -1 
     \\
     ~~3
   \end{array}
 \right)
</pre>
<p>


Una matriz nula es una matriz rectangular con todos sus elementos nulos. Se denota por   
0
. Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     0 & 0 & 0
     \\
     0 & 0 & 0
   \end{array}
 \right)
</pre>
<p>


Matriz triangular superior es toda matriz cuadrada en la que todos los terminos situados por debajo de la diagonal principal son ceros. Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & -1 & ~~0
     \\
     0 & ~~3 & -1
     \\
     0  & ~~0 & ~~2
   \end{array}
 \right)
</pre>
<p>


Matriz triangular inferior es toda matriz cuadrada en la que todos los terminos situados por encima de la diagonal principal son ceros Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     2 & ~~0 & 0 
     \\
     3 & -1 & 0
     \\
     1 & -1 & 3
   \end{array}
 \right)
</pre>
<p>


Matriz diagonal es toda matriz cuadrada en la que todos los terminos no situados en la diagonal principal son ceros. Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     ~~2 & ~~0 & ~~0 
     \\
     ~~0 & -1 & ~~0
     \\
     ~~0 & ~~0 & ~~3
   \end{array}
 \right)
</pre>
<p>


Matriz escalar es toda matriz diagonal en la que todos los terminos de la diagonal principal son iguales. Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     2 & {0} & {0} 
     \\
     {0} & 2 & {0}
     \\
     {0} & {0} & 2
   \end{array}
 \right)
</pre>
<p>


Matriz unidad es la matriz escalar cuyos elementos de la diagonal principal son todos   
1
  . Ejemplo:



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & {0} & {0} 
     \\
     {0} & 1 & {0}
     \\
     {0} & {0} & 1
   \end{array}
 \right)
</pre>
<p>


Operaciones con matrices


Dos matrices son iguales si tienen la misma dimension y si los elementos que ocupan el mismo lugar en ambas, son iguales.

Para dos matrices   
A = \left( a_{ij} \right)
  y   
B = \left( b_{ij} \right)
  de la misma dimension   
m \times n
,   la suma de   
A
  y   
B
  es la matriz de la misma dimension   
m \times n
,   dada por



A + B = \left( a_{ij} \right) + \left( b_{ij} \right) = \left( a_{ij} + b_{ij} \right)


Ejemplo:



A + B = 
\left(
</p>
<pre> \begin{array}[c]{ccc}
   a_{11 }& a_{12} & a_{13}
   \\
   a_{21 }& a_{22} & a_{23}
   \\
   a_{31 }& a_{32} & a_{33}
 \end{array}
</pre>
<p>\right)
+
\left(
</p>
<pre> \begin{array}[c]{ccc}
   b_{11 }& b_{12} & b_{13}
   \\
   b_{21 }& b_{22} & b_{23}
   \\
   b_{31 }& b_{32} & b_{33}
 \end{array}
</pre>
<p>\right)
=
\left(
</p>
<pre> \begin{array}[c]{ccc}
   a_{11 } + b_{11 } & a_{12} + b_{12} & a_{13} + b_{13}
   \\
   a_{21 } + b_{21 } & a_{22} + b_{22} & a_{23} + b_{23}
   \\
   a_{31 } + b_{31 } & a_{32} + b_{32} & a_{33} + b_{33}
 \end{array}
</pre>
<p>\right)


Para un número real   
k
  y una matriz   
A = \left( a_{ij} \right)}
  de dimension   
m \times n
,   el producto de un número real por una matriz es la matriz de la misma dimension   
m \times n
  dada por



k \cdot A = k \cdot \left( a_{ij} \right) = \left( k \cdot a_{ij} \right)


Es decir, el producto   
k \cdot A 
  se obtiene multiplicando el numero real por cada uno de los elementos de la matriz. Ejemplo:



k \cdot A  = k \cdot
\left(
</p>
<pre> \begin{array}[c]{cc}
   a_{11 }& a_{12} 
   \\
   a_{21 }& a_{22} 
   \\
   a_{31 }& a_{32} 
 \end{array}
</pre>
<p>\right)
=
\left(
</p>
<pre> \begin{array}[c]{cc}
   k \cdot a_{11 }& k \cdot a_{12} 
   \\
   k \cdot a_{21 }& k \cdot a_{22} 
   \\
   k \cdot a_{31 }& k \cdot a_{32} 
 \end{array}
</pre>
<p>\right)




Producto de matrices


El producto de dos matrices   
A = \left( a_{ij} \right)
  de dimension   
m \times n
  y   
B = \left( b_{ij} \right)
  de dimension   
n \times p
,   es la matriz   
A \cdot B
  dada por:



A \cdot B = \left( c_{ij} \right)


con



</p>
<pre>c_{ij} = \sum_{j = 1}^n a_{ij} \cdot b_{jk}
</pre>
<p>


Es decir, cada elemento   
c_{ik}
  se obtiene multiplicando la fila i-ésima de la primera matriz por la columna k-ésima de la segunda matriz. Ejemplo:



\left(
</p>
<pre> \begin{array}[c]{ccc}
   1 & 2 & 3 
   \\
   4 & 5 & 6 
 \end{array}
</pre>
<p>\right)
\cdot
\left(
</p>
<pre> \begin{array}[c]{cc}
   ~~7 & ~~8
   \\
   ~~9 & ~~0
   \\
   -1 & -2
 \end{array}
</pre>
<p>\right)
=
\left(
</p>
<pre> \begin{array}[c]{cc}
   1 \cdot 7 + 2 \cdot 9 + 3 \cdot \left( -1 \right) & 1 \cdot 8 + 2 \cdot 0 + 3 \cdot \left( -2 \right)
   \\
   4 \cdot 7 + 5 \cdot 9 + 6 \cdot \left( -1 \right) & 4 \cdot 8 + 5 \cdot 0 + 6 \cdot \left( -2 \right)
 \end{array}
</pre>
<p>\right)


Propiedades:


  • El producto de matrices cuadradas es asociativo:



A \cdot
\left(
</p>
<pre> B \cdot C
</pre>
<p>\right)
=
\left(
</p>
<pre> A \cdot B
</pre>
<p>\right)
\cdot C


  • El producto de matrices cuadradas de orden  


n
  posee como elemento neutro la matriz unidad o identidad   
I
  de orden   
n
  ya que:



A \cdot I = I \cdot A = A


  • El producto de matrices cuadradas es distributivo respecto de la suma de matrices:



A \cdot
\left(
</p>
<pre> B + C
</pre>
<p>\right)
</p>
<pre>= A \cdot B + A \cdot C
</pre>
<p>


Transposicion de matrices. Matriz simetrica y antisimetrica


Se llama matriz traspuesta de una matriz   
A
  de dimension   
m \times n
,   a la matriz que se obtiene al cambiar en   
A
  las filas por columnas o las columnas por filas. Se representa por   
A^t
  y su dimension es   
n \times m


Propiedades:


  • 
\left( \, A^t \, \right)^t = A

    • 
\left( \, A + B \, \right)^t = A^t + B^t
 

      • 
\left( \, k \cdot A \, \right)^t = k \cdot A^t 
 

        • 
\left( \, A \cdot B \, \right)^t = B^t \cdot  A^t 
 


          Se llama matriz simetrica a toda matriz cuadrada   
A
  que coincide con su transpuesta:   
A = A^t
.   En una matriz simetrica cualquier par de elementos simetricos respecto a la diagonal principal son iguales. Ejemplo:


          
\left(
</p>
<pre> \begin{array}[c]{ccc}
   1 & 2 & 3 
   \\
   2 & 4 & 5
   \\
   3 & 5 & 7
 \end{array}
</pre>
<p>\right)


          Se llama matriz antisimetrica a toda matriz cuadrada   
A
  que coincide con la opuesta de su transpuesta:   
A = -A^t
.   En una matriz simetrica cualquier par de elementos simetricos respecto a la diagonal principal son opuestos. Ejemplo:


          
\left(
</p>
<pre> \begin{array}[c]{ccc}
   ~~ 0 & ~~2 & -3 
   \\
   -2 & ~~0 & ~~5
   \\
   ~~ 3 & -5 & ~~0
 \end{array}
</pre>
<p>\right)


          Matriz inversa


          La matriz inversa de una matriz cuadrada   
A
  de orden   
n,
  es la matriz   
, A^{-1},
  de orden   
n
  que verifica:


          
A \cdot A^{-1} = A^{-1} \cdot A = I


          Las matrices que tienen inversas se llaman regulares y las que no tienen inversa matrices singulares.


          Calculo de la matriz inversa


          Para calcular la matriz inversa de una matriz regular podemos utilizar dos procedimientos:


          Mediante la definicion


          Por ejemplo para hallar la matriz inversa de la matriz


          
A =
\left(
</p>
<pre> \begin{array}[c]{cc}
   1 & 2
   \\
   3 & 7
 \end{array}
</pre>
<p>\right)


          hacemos


          
A^{-1} =
\left(
</p>
<pre> \begin{array}[c]{cc}
   a & b
   \\
   c & d
 \end{array}
</pre>
<p>\right)


          como


          
I = A \cdot A^{-1} \Rightarrow
\left(
</p>
<pre> \begin{array}[c]{cc}
   1 & 2
   \\
   3 & 7
 \end{array}
</pre>
<p>\right)
\cdot
\left(
</p>
<pre> \begin{array}[c]{cc}
   a & b
   \\
   c & d
 \end{array}
</pre>
<p>\right)
=
\left(
</p>
<pre> \begin{array}[c]{cc}
   1 & 0
   \\
   0 & 1
 \end{array}
</pre>
<p>\right)


          Operando:


          
\left(
</p>
<pre> \begin{array}[c]{cc}
   a + 2c & b + 2d
   \\
   3a + 7c & 3b + 7d
 \end{array}
</pre>
<p>\right)
=
\left(
</p>
<pre> \begin{array}[c]{cc}
   1 & 0
   \\
   0 & 1
 \end{array}
</pre>
<p>\right)
\Leftrightarrow
\left\{
</p>
<pre> \begin{array}[c]{ccc}
   a + 2c & = & 1
   \\
   3a + 7c & = & 0
   \\
   b + 2d & = & 0
   \\
   3b + 7d & = & 1
   \\
 \end{array}
</pre>
<p>\right.


          
\Rightarrow \left\{
</p>
<pre> \begin{array}[c]{ccc}
   a & = & 7
   \\
   b & = & -2
   \\
   c & = & -3
   \\
   d & = & 1
   \\
 \end{array}
</pre>
<p>\right.


          Método de Gauss-Jordan


          La inversa de una matriz regular   
A
  se calcular transformando la matriz   
\left(
</p>
<pre>\, A \, \left| \, I \, \right.
</pre>
<p>\right)
  mediante operaciones elementales por filas en la matriz   
\left(
</p>
<pre>\, I \, \left| \, A^{-1} \, \right.
</pre>
<p>\right)

          Las operaciones elementales por filas en una matriz son las siguientes:

          1. Intercambiar las filas  

          
i
  y   
j,
  que designaremos por   
F_i \longrightarrow F_j
 

          1. Multiplicar la fila  

          
i
  por el numero   
k \neq 0
  y sustituirla por el resultado; lo designamos por   
F_i \tau k \cdot F_i

          1. Multiplicar la fila  

          
i
  por el numero   
k \neq 0
  y sustituirla por el resultado; lo designamos por   
F_i \tau k \cdot F_i

          1. Sumar las filas  

          
i
  y   
j,
 , multiplicadas por sendos números, y llevar el resultado a la fila   
i
  o   
j
 . Lo designamos por   
F_i
  o   
F_j \to k \cdot F_i + t \cdot F_j


          Rango de una matriz


          En la matriz


          
\left(
</p>
<pre> \begin{array}[c]{cccc}
   a_{11 }& a_{12} & \ldots &  a_{1n}
   \\
   a_{21 }& a_{22} & \ldots &  a_{2n}
   \\
   \vdots & \vdots & \ddots & \vdots
   \\
   a_{m1 }& a_{m2} & \ldots &  a_{mn}
 \end{array}
</pre>
<p>\right)


          Se dice que las filas  


          
F_i, \, F_j, \, F_k, \, \ldots, \, F_t


          
\left(
</p>
<pre> \, F_i =
</pre>
<p>\left(
</p>
<pre> \, a_{i1 }, \, a_{i2}, \, \ldots, \, a_{in} \, 
</pre>
<p>\right)
\right)


          son dependientes si existen números   
\alpha_j, \, \alpha_k, \, \ldots, \, \alpha_t \in R
  tales que


          
F_i = \alpha_j \cdot F_j + \alpha_k \cdot F_k + \, \ldots \, + \alpha_t \cdot F_t


          En caso contrario, se dice que las filas   
F_i, \, F_j, \, F_k, \, \ldots, \, F_t 
  son linealmente independientes.

          El rango de una matriz es el número de filas o de columnas linealmente independientes que tiene esa matriz.

             
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.