Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Bisectriz de un ángulo

De Wikillerato

(Diferencias entre revisiones)
Línea 1: Línea 1:
La bisectriz de un [[ángulo]] formado por dos [[rectas]] r y s que se cortan en el punto V se define como el [[lugar geométrico]] de los puntos del plano que están a la misma [[distancia]] de la recta r que de la recta s. La bisectriz de un ángulo es otra recta concurrente con las dos que forman el ángulo, es decir, que pasa también por el vértice V del ángulo.
La bisectriz de un [[ángulo]] formado por dos [[rectas]] r y s que se cortan en el punto V se define como el [[lugar geométrico]] de los puntos del plano que están a la misma [[distancia]] de la recta r que de la recta s. La bisectriz de un ángulo es otra recta concurrente con las dos que forman el ángulo, es decir, que pasa también por el vértice V del ángulo.
-
[[Imagen: bisectriz.jpg]]
+
[[Imagen:bisectriz.png]]
Evidentemente, dos rectas r y s que se cortan dividen al plano en cuatro regiones y forman igualmente cuatro ángulos distintos con el mismo vértice. De estos cuatro ángulos los que son opuestos por el vértice son iguales entre sí y los adyacentes son complementarios. Los ángulos opuestos por el vértice comparten la misma bisectriz, mientras que las bisectrices de dos ángulos complementarios adyacentes son ortogonales (perpendiculares).
Evidentemente, dos rectas r y s que se cortan dividen al plano en cuatro regiones y forman igualmente cuatro ángulos distintos con el mismo vértice. De estos cuatro ángulos los que son opuestos por el vértice son iguales entre sí y los adyacentes son complementarios. Los ángulos opuestos por el vértice comparten la misma bisectriz, mientras que las bisectrices de dos ángulos complementarios adyacentes son ortogonales (perpendiculares).
-
[[Imagen:bisectrices_ortogonales.jpg]]
+
[[Imagen:bisectrices_ortogonales.png]]
Para determinar la bisectriz del ángulo determinado por dos semirectas r y s con origen en un vértice común V habrá que determinar primero un punto P que equidiste de las dos semirectas. Una vez determinado éste, la semirecta con origen en V que pasa por el punto P será la bisectriz buscada.
Para determinar la bisectriz del ángulo determinado por dos semirectas r y s con origen en un vértice común V habrá que determinar primero un punto P que equidiste de las dos semirectas. Una vez determinado éste, la semirecta con origen en V que pasa por el punto P será la bisectriz buscada.
Línea 11: Línea 11:
Una posibilidad es trazar dos una recta [[paralela]] a r a una distancia d de la misma, y otra recta paralela a s que esté a la misma distancia d de ella. Ambas paralelas se cortarán en un punto P, que equidista de r y s, siendo por lo tanto la recta VP la bisectriz del ángulo formado por r y s.
Una posibilidad es trazar dos una recta [[paralela]] a r a una distancia d de la misma, y otra recta paralela a s que esté a la misma distancia d de ella. Ambas paralelas se cortarán en un punto P, que equidista de r y s, siendo por lo tanto la recta VP la bisectriz del ángulo formado por r y s.
-
[[Imagen:bisectriz_por_paralelas]]
+
[[Imagen:bisectriz_por_paralelas.png]]

Revisión de 16:43 11 ene 2007

La bisectriz de un ángulo formado por dos rectas r y s que se cortan en el punto V se define como el lugar geométrico de los puntos del plano que están a la misma distancia de la recta r que de la recta s. La bisectriz de un ángulo es otra recta concurrente con las dos que forman el ángulo, es decir, que pasa también por el vértice V del ángulo.

Imagen:bisectriz.png

Evidentemente, dos rectas r y s que se cortan dividen al plano en cuatro regiones y forman igualmente cuatro ángulos distintos con el mismo vértice. De estos cuatro ángulos los que son opuestos por el vértice son iguales entre sí y los adyacentes son complementarios. Los ángulos opuestos por el vértice comparten la misma bisectriz, mientras que las bisectrices de dos ángulos complementarios adyacentes son ortogonales (perpendiculares).

Imagen:bisectrices_ortogonales.png

Para determinar la bisectriz del ángulo determinado por dos semirectas r y s con origen en un vértice común V habrá que determinar primero un punto P que equidiste de las dos semirectas. Una vez determinado éste, la semirecta con origen en V que pasa por el punto P será la bisectriz buscada.

Una posibilidad es trazar dos una recta paralela a r a una distancia d de la misma, y otra recta paralela a s que esté a la misma distancia d de ella. Ambas paralelas se cortarán en un punto P, que equidista de r y s, siendo por lo tanto la recta VP la bisectriz del ángulo formado por r y s.

Imagen:bisectriz_por_paralelas.png

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.