Energía de un oscilador armónico
De Wikillerato
(→Introducción) |
|||
Línea 5: | Línea 5: | ||
La energía que es capaz de desarrollar el resorte es: | La energía que es capaz de desarrollar el resorte es: | ||
- | <math> W =\vec F \cdot \vector\Delta (x-x_0) = F \Delta (x-x_0) cos \theta </math> | + | <math> W =\vec F \cdot \vector {\Delta (x-x_0)} = F \Delta (x-x_0) cos \theta </math> |
Donde <math>\theta</math> es el ángulo formado por <math>F</math> e <math>\Delta (x -x_0)</math>, que en nuestro caso, dado que la <math>F</math> y la deformación tienen siempre sentidos opuestos, el ángulo es <math> \pi </math>, y como <math>cos \pi = -1</math>. Como por otra parte el valor máximo de <math>\Delta (x -x_0)</math> es <math>A</math>, la ecuación de la energía del oscilador será: | Donde <math>\theta</math> es el ángulo formado por <math>F</math> e <math>\Delta (x -x_0)</math>, que en nuestro caso, dado que la <math>F</math> y la deformación tienen siempre sentidos opuestos, el ángulo es <math> \pi </math>, y como <math>cos \pi = -1</math>. Como por otra parte el valor máximo de <math>\Delta (x -x_0)</math> es <math>A</math>, la ecuación de la energía del oscilador será: |
Revisión de 11:25 17 sep 2007
Tabla de contenidos |
Introducción
Cuando deformamos el resorte una longitud con respecto a la posición de equilibrio, la fuerza recuperadora del resorte será . Cuando el resorte está en equilibrio, la fuerza recuperadora suplementaria es cero.
La energía que es capaz de desarrollar el resorte es:
[Unparseable or potentially dangerous latex formula. Error 3 ]
Donde es el ángulo formado por e , que en nuestro caso, dado que la y la deformación tienen siempre sentidos opuestos, el ángulo es , y como . Como por otra parte el valor máximo de es , la ecuación de la energía del oscilador será:
La fuerza es variable, y varía entre los valores y . Esta variación es lineal y, en consecuencia podremos sustituirla en la ecuación por su valor medio, que será la semisuma de los valores máximo y mínimo, .
La energía máxima del resorte será:
Es decir, la energía sólo depende de la constante de elasticidad del resorte y de la distancia a la posición de equilibrio. Y es, en los extremos, una energía potencial elástica.
Cuando estiramos el resorte una longitud y soltamos, el resorte comienza a moverse, desde una velocidad cero, en los extremos, puesto que pasa de a y viceversa, a un valor máximo cuando el resorte pasa por la posición de equilibrio.
La energía asociada al movimiento es la energía cinética, y será, al pasar por la posición de equilibrio, igual a la energía potencial máxima, tendremos
Pero el oscilador, en su movimiento, pasará por una posición en la cual llevará una velocidad , y la ecuación de la energía del movimiento nos quedará
Es decir, la energía total se conserva y es igual, en cada instante, a la suma de la energía potencial y de la energía cinética
En todo caso, no debemos olvidar nunca que siempre ha de cumplirse la segunda ley de Newton
De donde obtenemos que
Es decir, la aceleración es proporcional a la distancia a la posición de equilibrio pero con sentido opuesto.