Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Wikillerato:Portal de la comunidad

De Wikillerato

(Diferencias entre revisiones)
m
Línea 40: Línea 40:
{{portal_destacado| Imagen destacada del mes| [[:Imagen:Pila-de-daniel-rotulada.jpg| Pila de Daniel]]|[[Imagen:Pila-de-daniel-rotulada.jpg|500px]]}}
{{portal_destacado| Imagen destacada del mes| [[:Imagen:Pila-de-daniel-rotulada.jpg| Pila de Daniel]]|[[Imagen:Pila-de-daniel-rotulada.jpg|500px]]}}
 +
 +
<h2>Redes sociales</h2>
 +
 +
¡Síguenos en [http://www.twitter.com/wikillerato Twitter] y [http://www.facebook.com/pages/Wikillerato/185524501492896 Facebook] para mantenerte informado de las últimas novedades del proyecto!!

Revisión de 09:42 25 mar 2011


Artículo destacado del mes

Métodos de integración


No todos los métodos de integración son adecuados para todas las integrales. La habilidad de ver cuál es el método de integración mas idóneo para calcular una integral se adquiere resolviendo muchas integrales.


Integración por partes


La fórmula para la derivada de un producto es:


\left( \, u \cdot v \, \right)^\prime = u^\prime \cdot v + u \cdot v^\prime

Despejando el último sumando, queda:


u \cdot v^\prime = \left( \, u \cdot v \, \right)^\prime - u^\prime \cdot v

Si integramos en los dos miembros, se obtiene:


\int u \cdot v^\prime \cdot \mathrm{d}x = \int \left( \, u \cdot v \, \right)^\prime \mathrm{d}x - \int
u^\prime \cdot v \cdot\mathrm{d}x = u \cdot v - \int u^\prime \cdot v \cdot\mathrm{d}x

La última igualdad es cierta porque una primitiva de la derivada de una función es esa misma función.


(sigue leyendo...)


Imagen destacada del mes


Redes sociales

¡Síguenos en Twitter y Facebook para mantenerte informado de las últimas novedades del proyecto!!


Participa


Políticas, ayudas y recursos

¿Nuevo en Wikillerato? Antes de empezar a editar, conviene que eches un vistazo a los siguientes apartados:


¿Cómo colaborar?

Estas son algunas de las tareas pendientes en las que puedes ayudar:

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.