Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Método de reducción de Gauss

De Wikillerato

(Diferencias entre revisiones)
Línea 193: Línea 193:
y
y
</math>
</math>
-
. Que resolvemos para obtener &nbsp;
+
, que resolvemos para obtener &nbsp;
<math>
<math>
y \, = \, 1
y \, = \, 1

Revisión de 00:27 23 ene 2007

Gauss es uno de los matematicos mas importantes de todos los tiempos. ¡Fue un GENIO!
Gauss es uno de los matematicos mas importantes de todos los tiempos. ¡Fue un GENIO!


El método de Gauss consiste en transformar el sistema dado en otro equivalente. Para ello tomamos la matriz ampliada del sistema y mediante las operaciones elementales por filas la transformamos en una matriz triangular superior ( o inferior ). De esta forma obtenemos un sistema equivalente al inicial y que es muy facil de resolver.


Ejemplo


La matriz ampliada del sistema de ecuaciones:



\left\{
</p>
<pre> \begin{array}[c]{ccc}
   x \, + \, y \, + \, z & = & ~~3
   \\
   x \, + \, y \, - \, z & = & ~~1
   \\
   x \, - \, y \, - \, z & = & -1
 \end{array}
</pre>
<p>\right.


es:



\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~1 & ~~1 & -1
     \\
     ~~1 & -1 & -1
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   ~~1
   \\
   -1
 \end{array}
</pre>
<p>\right)


Si a la tercera y segunda fila le restamos la primera, obtenemos:



\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~0 & ~~0 & -2
     \\
     ~~0 & -2 & -2
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   -2
   \\
   -4
 \end{array}
</pre>
<p>\right)


Si ahora intercambiamos la segunda y tercera filas, obtenemos



\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~0 & -2 & -2
     \\
     ~~0 & ~~0 & -2
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   -4
   \\
   -2
 \end{array}
</pre>
<p>\right)


que es la matriz ampliada del sistema de ecuaciones:



\left\{
</p>
<pre> \begin{array}[c]{rcl}
   x \, + \, y \, + \, z & = & ~~3
   \\
   -2y \, - \, 2z & = & -4
   \\
   -2z & = & -2
 \end{array}
</pre>
<p>\right.


que es equivalente al inicial.


Solucionamos la tercera ocuacion para obtener   
z
 :



z \, = \, 1


En la primera y segunda ecuación, sustituimos   
z
  por la solucion de la tercera ecuación   (   
1 \to z
  ), para obtener:



\left\{
</p>
<pre> \begin{array}[c]{rcl}
   x \, + \, y \, + \, 1 & = & ~~3
   \\
   -2y \, - \, 2 & = & -4
 \end{array}
</pre>
<p>\right.


La segunda ecuación es ahora una ecuación con una sola incognita,   
y
, que resolvemos para obtener   
y \, = \, 1
.   Sustituimos, en la primera ecuación,   
y
  por 1   (   
1 \to y
  ). Esto nos da una ecuación en   
x
 :



x \, + \, 1 \, + \, 1 \, = \, 3


que al resolverla termina de darnos la solución del sistema de ecuaciones inicial:



x \, = \, y \, = \, z \, = \, 1


   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.