Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Ayuda:Fórmulas Matemáticas

De Wikillerato

(Diferencias entre revisiones)
Línea 240: Línea 240:
<table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0">
<table style="border: 1px solid rgb(170, 170, 170); margin: 1em 1em 1em 0pt; background: rgb(249, 249, 249) none repeat scroll 0%;border-collapse: collapse;" border="2" cellpadding="4" cellspacing="0">
<tr>
<tr>
-
<th rowspan="2">&nbsp;</th>
+
<th>&nbsp;</th>
-
<th rowspan="2">Sintaxis</th>
+
<th>Sintaxis</th>
-
<th colspan="2">C&oacute;mo se ver&aacute;</th>
+
<th>Cómo se verá</th>
-
</tr>
+
-
<tr>
+
-
<th>HTML</th>
+
-
<th>PNG</th>
+
</tr>
</tr>
<tr>
<tr>
<td>Super&iacute;ndice</td>
<td>Super&iacute;ndice</td>
<td><code>a^2</code></td>
<td><code>a^2</code></td>
-
<td><i>a</i><sup>2</sup></td>
 
<td><math> a^2 </math></td>
<td><math> a^2 </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td>Sub&iacute;ndice</td>
+
<td>Subíndice</td>
<td><code>a_2</code></td>
<td><code>a_2</code></td>
-
<td>><i>a</i><sub>2</sub></td>
 
<td><math> a_2 </math></td>
<td><math> a_2 </math></td>
</tr>
</tr>
Línea 263: Línea 257:
<td rowspan="2">Agrupar</td>
<td rowspan="2">Agrupar</td>
<td><code>a^{2+2}</code></td>
<td><code>a^{2+2}</code></td>
-
<td><i>a</i><sup>2 + 2</sup></td>
 
<td><math> a^{2+2} </math></td>
<td><math> a^{2+2} </math></td>
</tr>
</tr>
<tr>
<tr>
<td><code>a_{i,j}</code></td>
<td><code>a_{i,j}</code></td>
-
<td><i>a</i><sub><i>i</i>,<i>j</i></sub></td>
 
<td><math> a_{i,j} </math></td>
<td><math> a_{i,j} </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td>Combinar super&iacute;ndice y sub&iacute;ndice</td>
+
<td>Combinar superindice y subíndice</td>
<td><code>x_2^3</code></td>
<td><code>x_2^3</code></td>
-
<td colspan="2"><math> x_2^3 </math></td>
+
<td><math> x_2^3 </math></td>
-
</tr>
+
-
<tr>
+
-
<td rowspan="2">Super&iacute;ndices y sub&iacute;ndices, anteriores, posteriores, arriba y abajo</td>
+
-
<td><code>\sideset{_1^2}{_3^4}\prod_a^b</code></td>
+
-
<td colspan="2"><math> \sideset{_1^2}{_3^4}\prod_a^b </math></td>
+
</tr>
</tr>
<tr>
<tr>
-
<td><code>{}_1^2\!\Omega_3^4</code></td>
+
<td rowspan="2">Superíndices y subíndices, anteriores, posteriores, arriba y abajo</td>
-
<td colspan="2"><math> {}_1^2\!\Omega_3^4 </math></td>
+
<td><code>\sideset {_1^2} {_3^4} \prod_a^b</code></td>
 +
<td><math> \sideset {_1^2} {_3^4} \prod_a^b </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td rowspan="4">Apilar</td>
+
<td><code>{}_1^2 \! \Omega_3^4</code></td>
-
<td><code>\overset{\alpha}{\omega}</code></td>
+
<td><math> {}_1^2 \! \Omega_3^4 </math></td>
-
<td colspan="2"><math> \overset{\alpha}{\omega} </math></td>
+
</tr>
</tr>
<tr>
<tr>
-
<td><code>\underset{\alpha}{\omega}</code></td>
+
<td rowspan="3">Apilar</td>
-
<td colspan="2"><math> \underset{\alpha}{\omega </math></td>
+
<td><code>\overset { \alpha} { \omega}</code></td>
 +
<td><math> \overset { \alpha} { \omega} </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td><code>\overset{\alpha}{\underset{\gamma}{\omega}}</code></td>
+
<td><code>\overset { \alpha} { \underset { \gamma} { \omega}}</code></td>
-
<td colspan="2"><math> \overset{\alpha}{\underset{\gamma}{\omega}} </math></td>
+
<td><math> \overset { \alpha} { \underset { \gamma} { \omega}} </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td><code>\stackrel{\alpha}{\omega}</code></td>
+
<td><code>\stackrel { \alpha} { \omega}</code></td>
-
<td colspan="2"><math> \stackrel{\alpha}{\omega} </math></td>
+
<td><math> \stackrel { \alpha} { \omega} </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td>Derivadas ( forzando el PNG)</td>
+
<td>Derivadas</td>
<td><code>x', y'', f', f''</code></td>
<td><code>x', y'', f', f''</code></td>
-
<td colspan="2"><math> x', y'', f', f'' </math></td>
+
<td><math> x', y'', f', f'' </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td rowspan="3">Subrayado, l&iacute;nea superior, vectores</td>
+
<td rowspan="3">Subrayado, línea superior, vectores</td>
<td><code>\hat a \ \bar b \ \vec c</code></td>
<td><code>\hat a \ \bar b \ \vec c</code></td>
-
<td colspan="2"><math> \hat a \ \bar b \ \vec c </math></td>
+
<td><math> \hat a \ \bar b \ \vec c </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td><code>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</code></td>
+
<td><code>\overrightarrow {a b} \overleftarrow {c d} \widehat {d e f}</code></td>
-
<td colspan="2"><math> \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} </math></td>
+
<td><math> \overrightarrow {a b} \overleftarrow {c d} \widehat {d e f} </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td><code>\overline{g h i} \ \underline{j k l}</code></td>
+
<td><code>\overline {g h i} \underline {j k l}</code></td>
-
<td colspan="2"><math> \overline{g h i} \ \underline{j k l} </math></td>
+
<td><math> \overline {g h i} \underline {j k l} </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Flechas</td>
<td>Flechas</td>
-
<td><code>A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</code></td>
+
<td><code>A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C</code></td>
-
<td colspan="2"><math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C </math></td>
+
<td><math> A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Llaves superiores</td>
<td>Llaves superiores</td>
-
<td><code>\overbrace{ 1+2+\cdots+100 }^{5050}</code></td>
+
<td><code>\overbrace{ 1+2+ \cdots+100 } ^ {5050}</code></td>
-
<td colspan="2"><math> \overbrace{ 1+2+\cdots+100 }^{5050} </math></td>
+
<td><math> \overbrace{ 1+2+ \cdots+100 } ^ {5050} </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Llaves inferiores</td>
<td>Llaves inferiores</td>
-
<td><code>\underbrace{ a+b+\cdots+z }_{26}</code></td>
+
<td><code>\underbrace { a+b+ \cdots+z }_{26}</code></td>
-
<td colspan="2"><math> \underbrace{ a+b+\cdots+z }_{26} </math></td>
+
<td><math> \underbrace { a+b+ \cdots+z }_{26} </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Sumatorios</td>
<td>Sumatorios</td>
<td><code>\sum_{k=1}^N k^2</code></td>
<td><code>\sum_{k=1}^N k^2</code></td>
-
<td colspan="2"><math> \sum_{k=1}^N k^2 </math></td>
+
<td><math> \sum_{k=1}^N k^2 </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Productorio</td>
<td>Productorio</td>
<td><code>\prod_{i=1}^N x_i</code></td>
<td><code>\prod_{i=1}^N x_i</code></td>
-
<td colspan="2"><math> \prod_{i=1}^N x_i </math></td>
+
<td><math> \prod_{i=1}^N x_i </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td>Coproduct</td>
+
<td>Coproducto</td>
<td><code>\coprod_{i=1}^N x_i</code></td>
<td><code>\coprod_{i=1}^N x_i</code></td>
-
<td colspan="2"><math> \coprod_{i=1}^N x_i </math></td>
+
<td><math> \coprod_{i=1}^N x_i </math></td>
</tr>
</tr>
<tr>
<tr>
-
<td>L&iacute;mite</td>
+
<td>Límite</td>
<td><code>\lim_{n \to \infty}x_n</code></td>
<td><code>\lim_{n \to \infty}x_n</code></td>
-
<td colspan="2"><math> \lim_{n \to \infty}x_n </math></td>
+
<td><math> \lim_{n \to \infty}x_n </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Integral</td>
<td>Integral</td>
<td><code>\int_{-N}^{N} e^x\, dx</code></td>
<td><code>\int_{-N}^{N} e^x\, dx</code></td>
-
<td colspan="2"><code>\int_{-N}^{N} e^x\, dx</code></td>
+
<td ><math>\int_{-N}^{N} e^x\, dx</math></td>
</tr>
</tr>
<tr>
<tr>
<td>Integral doble</td>
<td>Integral doble</td>
<td><code>\iint_{D}^{W} \, dx\,dy</code></td>
<td><code>\iint_{D}^{W} \, dx\,dy</code></td>
-
<td colspan="2"><math> \iint_{D}^{W} \, dx\,dy </math></td>
+
<td><math> \iint_{D}^{W} \, dx\,dy </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Integral triple</td>
<td>Integral triple</td>
<td><code>\iiint_{E}^{V} \, dx\,dy\,dz</code></td>
<td><code>\iiint_{E}^{V} \, dx\,dy\,dz</code></td>
-
<td colspan="2"><math> \iiint_{E}^{V} \, dx\,dy\,dz </math></td>
+
<td><math> \iiint_{E}^{V} \, dx\,dy\,dz </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Integral de l&iacute;nea</td>
<td>Integral de l&iacute;nea</td>
<td><code>\oint_{C} x^3\, dx + 4y^2\, dy</code></td>
<td><code>\oint_{C} x^3\, dx + 4y^2\, dy</code></td>
-
<td colspan="2"><math> \oint_{C} x^3\, dx + 4y^2\, dy </math></td>
+
<td><math> \oint_{C} x^3\, dx + 4y^2\, dy </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Intersecciones</td>
<td>Intersecciones</td>
<td><code>\bigcap_1^{n} p</code></td>
<td><code>\bigcap_1^{n} p</code></td>
-
<td colspan="2"><math> \bigcap_1^{n} p </math></td>
+
<td><math> \bigcap_1^{n} p </math></td>
</tr>
</tr>
<tr>
<tr>
<td>Uniones</td>
<td>Uniones</td>
<td><code>\bigcup_1^{k} p</code></td>
<td><code>\bigcup_1^{k} p</code></td>
-
<td colspan="2"><math> \bigcup_1^{k} p </math></td>
+
<td><math> \bigcup_1^{k} p </math></td>
</tr>
</tr>
</table>
</table>

Revisión de 12:14 6 nov 2007

Ayuda A continuación ofrecemos un cuadro de referencia con nociones básicas y ejemplos que sirven de ayuda para escribir fórmulas utilizando el código LaTeX.

Tabla de contenidos

Básicos

Acentos
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
\check{a} \bar{a} \ddot{a} \dot{a}  \check{a} \bar{a} \ddot{a} \dot{a}
Funciones estándar
\sin a \cos b \tan c  \sin a \cos b \tan c
\sec d \csc e \cot f  \sec d \csc e \cot f
\arcsin h \arccos i \arctan j  \arcsin h \arccos i \arctan j
\sinh k \cosh l \tanh m \coth n  \sinh k \cosh l \tanh m \coth n
\lim u \limsup v \liminf w \min x \max y  \lim u \limsup v \liminf w \min x \max y
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g  \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g
Derivadas
\nabla \partial x dx \dot x \ddot y  \nabla \partial x dx \dot x \ddot y
Conjuntos
\forall \exists \emptyset \varnothing  \forall \exists \emptyset \varnothing
\in \ni \notin \subset \subseteq \supset \supseteq  \in \ni \notin \subset \subseteq \supset \supseteq
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus  \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup  \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
Operadores
+ \oplus \bigoplus \pm \mp -  + \oplus \bigoplus \pm \mp -
\times \otimes \bigotimes \cdot \circ \bullet \bigodot  \times \otimes \bigotimes \cdot \circ \bullet \bigodot
\star * / \div \frac{1}{2}  \star * / \div \frac{1}{2}
Lógica
\land \wedge \bigwedge \bar{q} \to p  \land \wedge \bigwedge \bar{q} \to p
\lor \vee \bigvee \lnot \neg q \And  \lor \vee \bigvee \lnot \neg q \And
Raíces
\sqrt{2} \sqrt[n]{x}  \sqrt{2} \sqrt[n]{x}
Relaciones
\sim \approx \simeq \cong  \sim \approx \simeq \cong
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto  \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
Geometría
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ  \Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
Flechas
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow  \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft  \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow  \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow
\Longrightarrow \Uparrow \Downarrow \Updownarrow  \Longrightarrow \Uparrow \Downarrow \Updownarrow
\nLeftrightarrow \longleftrightarrow  \nLeftrightarrow \longleftrightarrow
Especial
\eth \S \P \% \dagger \ddagger \ldots \cdots  \eth \S \P \% \dagger \ddagger \ldots \cdots
\smile \frown \wr \triangleleft \triangleright \infty \bot \top  \smile \frown \wr \triangleleft \triangleright \infty \bot \top
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar  \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
Otros
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown  \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge  \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes  \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant  \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot  \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox  \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot  \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq  \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork  \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq  \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid  \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr  \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq  \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq  \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq  \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq

Subíndices, superíndices, integrales

  Sintaxis Cómo se verá
Superíndice a^2  a^2
Subíndice a_2  a_2
Agrupar a^{2+2}  a^{2+2}
a_{i,j}  a_{i,j}
Combinar superindice y subíndice x_2^3  x_2^3
Superíndices y subíndices, anteriores, posteriores, arriba y abajo \sideset {_1^2} {_3^4} \prod_a^b  \sideset {_1^2} {_3^4} \prod_a^b
{}_1^2 \! \Omega_3^4  {}_1^2 \! \Omega_3^4
Apilar \overset { \alpha} { \omega}  \overset { \alpha} { \omega}
\overset { \alpha} { \underset { \gamma} { \omega}}  \overset { \alpha} { \underset { \gamma} { \omega}}
\stackrel { \alpha} { \omega}  \stackrel { \alpha} { \omega}
Derivadas x', y, f', f  x', y'', f', f''
Subrayado, línea superior, vectores \hat a \ \bar b \ \vec c  \hat a \ \bar b \ \vec c
\overrightarrow {a b} \overleftarrow {c d} \widehat {d e f}  \overrightarrow {a b} \overleftarrow {c d} \widehat {d e f}
\overline {g h i} \underline {j k l}  \overline {g h i} \underline {j k l}
Flechas A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C  A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C
Llaves superiores \overbrace{ 1+2+ \cdots+100 } ^ {5050}  \overbrace{ 1+2+ \cdots+100 } ^ {5050}
Llaves inferiores \underbrace { a+b+ \cdots+z }_{26}  \underbrace { a+b+ \cdots+z }_{26}
Sumatorios \sum_{k=1}^N k^2  \sum_{k=1}^N k^2
Productorio \prod_{i=1}^N x_i  \prod_{i=1}^N x_i
Coproducto \coprod_{i=1}^N x_i  \coprod_{i=1}^N x_i
Límite \lim_{n \to \infty}x_n  \lim_{n \to \infty}x_n
Integral \int_{-N}^{N} e^x\, dx \int_{-N}^{N} e^x\, dx
Integral doble \iint_{D}^{W} \, dx\,dy  \iint_{D}^{W} \, dx\,dy
Integral triple \iiint_{E}^{V} \, dx\,dy\,dz  \iiint_{E}^{V} \, dx\,dy\,dz
Integral de línea \oint_{C} x^3\, dx + 4y^2\, dy  \oint_{C} x^3\, dx + 4y^2\, dy
Intersecciones \bigcap_1^{n} p  \bigcap_1^{n} p
Uniones \bigcup_1^{k} p  \bigcup_1^{k} p

Fracciones, matrices, multilíneas

Alfabetos

Añadiendo paréntesis a grandes expresiones

Espaciado

Colores

Ejemplos

actualizando

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.