Métodos de resolución de sistemas de ecuaciones lineales
De Wikillerato
Tabla de contenidos |
Introducción
Método de reducción
Consiste en multiplicar ecuaciones por numeros y sumarlas para reducir el número de incognitas hasta llegar a ecuaciones con solo una incognita.
Multiplicar una ecuación por un número consiste en multiplicar ambos miembros de la ecuación por dicho número que no existe
Sumar dos ecuaciones consiste en obtener una nueva ecuación cuyo miembro final, debe ser igual a 0, para poder eliminar la incognita
Ejemplo
Multiplicando la primera ecuación por 3 y la segunda por -5, se obtienen las ecuaciones
15x - 9y = 6 -15x + 20y = 5
Al sumar ambas ecuaciones nos da la ecuación
11y = 11 </math> </center>
</center> La elección de los factores 3 y -5 se ha hecho precisamente para que la desaparezca al sumar ambas ecuaciones.
Sutituyendo por uno en la primera ecuación del sistema de ecuaciones de partida, se obtiene
que es otra ecuación con una sola incognita y cuya solución es .
Texto en negrita'Texto en cursiva
Método de igualación
Método de sustitución
Método de Gauss
El método de Gauss consiste en transformar el sistema dado en otro equivalente. Para ello tomamos la matriz ampliada del sistema y mediante las operaciones elementales con sus filas la transformamos en una matriz triangular superior ( o inferior ). De esta forma obtenemos un sistema equivalente al inicial y que es muy facil de resolver.
Es esencialmente el método de reducción. En el método de Gauss se opera con ecuaciones, como se hace en el método de reducción, pero uno se ahorra el escribir las incognitas porque al ir los coeficientes de una misma incognita siempre en una misma columna, uno sabe en todo momento cual es la incognita a la que multiplican.
Ejemplo
La matriz ampliada del sistema de ecuaciones:
es:
Si a la tercera y segunda fila le restamos la primera, obtenemos:
Lo que acabamos de hacer es equivalente a restar a la tercera y segunda ecuación la primera.
Si ahora intercambiamos la segunda y tercera filas ( ecuaciones ), obtenemos la siguiente matriz triangular superior:
que es la matriz ampliada del sistema de ecuaciones:
que es equivalente al inicial.
Solucionamos la tercera ocuacion para obtener :
En la primera y segunda ecuación, sustituimos
por la solucion de la tercera ecuación (
), para obtener:
La segunda ecuación es ahora una ecuación con una sola incognita, , que resolvemos para obtener . Sustituimos, en la primera ecuación, por 1 ( ). Esto nos da una ecuación en :
que al resolverla termina de darnos la solución del sistema de ecuaciones inicial:
Método de la matriz inversa
Un sistema de ecuaciones lineales se puede escribir en forma matricial:
Si existe, es decir, si es una matriz cuadrada de determinante no nulo, entonces podemos multiplicar toda la igualdad anterior por la izquierda por , para obtener:
que es la solución del sistema de ecuaciones lineales de matriz de coeficientes y matriz de terminos independientes .
Regla de Cramer
Esta regla es un método de resolución de sistemas de ecuaciones lineales que se puede utilizar cuando la matriz de coeficientes del sistema es cuadrada y de determinante no nulo. El que sea cuadrada significa que el numero de incognitas y el numero de ecuaciones coincide.
Cuando el sistema de ecuaciones
satisface las condiciones arriba mencionadas, su solución viene dada por:
En general
donde es la matriz que se obtiene sustituyendo la i-esima columna de por la matriz de los terminos independientes, .
Ejemplo
Consideremos el sistema de ecuaciones:
En este sistema de ecuaciones lineales, la matriz de los coeficientes es una matriz cuadrada y . Por lo tanto, podemos aplicar la regla de Cramer para resolverlo:
estoy tragado de mi papito por que siempre me hace arroz con, mi papito se encuentra muy mal de salud, le dio varicela en la vagina