Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Desarrollo de un determinante

De Wikillerato

En esta sección se explica un procedimiento que nos permite calcular determinantes de cualquier orden, pero antes hemos de introducir los conceptos de menor complementario, adjunto y matriz adjunta.


Tabla de contenidos

Menor complementario


Para una matriz cuadrada de orden   
n, \, A = \left( \, a_{ij} \, \right),
  se llama menor complementario del elemento   
a_{ij},
  y lo representamos por   
\alpha_{ij},
  al determinante de la matriz cuadrada de orden   
n - 1
  que resulta de suprimir la fila   
i
  y la columna   
j
  de la matriz   
A


Ejemplo


Los menores complementarios de la matriz



A =
\left(
</p>
<pre> \begin{array}{ccc}
   1 & 2 & 3
   \\
   4 & 5 & 6 
   \\
   7 & 8 & 9
 \end{array}
</pre>
<p>\right)


son



\begin{array}{ccc}
\alpha_{11} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   5 & 6
   \\
   8 & 9
 \end{array}
</pre>
<p>\right|
& 
\qquad \alpha_{12} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   4 & 6
   \\
   7 & 9
 \end{array}
</pre>
<p>\right|
& 
\qquad \alpha_{13} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   4 & 5
   \\
   7 & 8
 \end{array}
</pre>
<p>\right|
\\
& & 
\\
\alpha_{21} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   2 & 3
   \\
   8 & 9
 \end{array}
</pre>
<p>\right|
& 
\qquad \alpha_{22} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   1 & 3
   \\
   7 & 9
 \end{array}
</pre>
<p>\right|
& 
\qquad \alpha_{23} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   1 & 2
   \\
   7 & 8
 \end{array}
</pre>
<p>\right|
\end{array}



\begin{array}[c]{ccc}
\alpha_{31} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   2 & 3
   \\
   5 & 6
 \end{array}
</pre>
<p>\right|
& 
\qquad \alpha_{32} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   1 & 3
   \\
   4 & 6
 \end{array}
</pre>
<p>\right|
& 
\qquad \alpha_{33} =
\left|
</p>
<pre> \begin{array}[c]{cc}
   1 & 2
   \\
   4 & 5
 \end{array}
</pre>
<p>\right|
\end{array}


Matriz adjunta


Para una matriz cuadrada de orden   
n, \, A = \left( \, a_{ij} \, \right),
  se llama adjunto del elemento   
a_{ij},
  y lo representamos por   
A_{ij},
  al producto   
\left( \, -1 \, \right)^{i + j} \cdot \alpha_{ij}
,   es decir:



A_{ij} = \left( \, -1 \, \right)^{i + j} \cdot \alpha_{ij}


La matriz cuyos elementos son los adjuntos de los elementos de una matriz cuadrada   
A
  se llama matriz adjunta de   
A
  y se denota por   
\makebox{Adj} \left( A \right)
 


Ejemplo


Los adjuntos de la matriz   
A
  del ejemplo anterior son:



\begin{array}{ccccccccccc}
A_{11} & = & -3 & \qquad & A_{12} & = & ~~~6 \\
A_{21} & = & ~~6 & \qquad & A_{22} & = & -12 \\
A_{31} & = & -3 & \qquad & A_{32} & = & ~~~6 &\end{array}


La matriz adjunta de   
A
  es



\makebox{Adj} \left( A \right) =
\left(
</p>
<pre> \begin{array}{ccc}
</pre>
<p>-3 & ~~~6 & -3
\\
~~6 & -12 & ~~6
\\
-3 & ~~~6 & -3
\end{array}
\right)


Desarrollo de un determinante


El determinante de una matriz cuadrada de orden    n   es igual a la suma de los productos de los elementos de una línea o columna cualquiera por sus adjuntos respectivos. Simbolicamente:


\makebox{det} \left( \, A \, \right) \, = \, a_{i1} \cdot A_{i1} + a_{i2} \cdot A_{i2} + \ldots + a_{in} \cdot A_{in}


\makebox{det} \left( \, A \, \right) \, = \, a_{1j} \cdot A_{1j} + a_{2j} \cdot A_{2j} + \ldots + a_{nj} \cdot A_{nj}


Ejercicios resueltos


Calcular un determinante 4x4
Desarrollo de un determinante utilizando sus propiedades generales

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.