Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Ayuda:Fórmulas Matemáticas

De Wikillerato

Revisión a fecha de 14:53 9 oct 2008; Laura.2mdc (Discutir | contribuciones)
(dif) ← Revisión anterior | Ver revisión actual (dif) | Revisión siguiente → (dif)

A continuación ofrecemos un cuadro de referencia con nociones básicas y ejemplos que sirven de ayuda para escribir fórmulas utilizando el código LaTeX.

Tabla de contenidos

Básicos

Acentos
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
\check{a} \bar{a} \ddot{a} \dot{a}  \check{a} \bar{a} \ddot{a} \dot{a}
Funciones estándar
\sin a \cos b \tan c  \sin a \cos b \tan c
\sec d \csc e \cot f  \sec d \csc e \cot f
\arcsin h \arccos i \arctan j  \arcsin h \arccos i \arctan j
\sinh k \cosh l \tanh m \coth n  \sinh k \cosh l \tanh m \coth n
\lim u \limsup v \liminf w \min x \max y  \lim u \limsup v \liminf w \min x \max y
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g  \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g
Derivadas
\nabla \partial x dx \dot x \ddot y  \nabla \partial x dx \dot x \ddot y
Conjuntos
\forall \exists \emptyset \varnothing  \forall \exists \emptyset \varnothing
\in \ni \notin \subset \subseteq \supset \supseteq  \in \ni \notin \subset \subseteq \supset \supseteq
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus  \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup  \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
Operadores
+ \oplus \bigoplus \pm \mp -  + \oplus \bigoplus \pm \mp -
\times \otimes \bigotimes \cdot \circ \bullet \bigodot  \times \otimes \bigotimes \cdot \circ \bullet \bigodot
\star * / \div \frac{1}{2}  \star * / \div \frac{1}{2}
Lógica
\land \wedge \bigwedge \bar{q} \to p  \land \wedge \bigwedge \bar{q} \to p
\lor \vee \bigvee \lnot \neg q \And  \lor \vee \bigvee \lnot \neg q \And
Raíces
\sqrt{2} \sqrt[n]{x}  \sqrt{2} \sqrt[n]{x}
Relaciones
\sim \approx \simeq \cong  \sim \approx \simeq \cong
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto  \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
Geometría
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ  \Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
Flechas
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow  \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft  \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow  \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow
\Longrightarrow \Uparrow \Downarrow \Updownarrow  \Longrightarrow \Uparrow \Downarrow \Updownarrow
\nLeftrightarrow \longleftrightarrow  \nLeftrightarrow \longleftrightarrow
Especial
\eth \S \P \% \dagger \ddagger \ldots \cdots  \eth \S \P \% \dagger \ddagger \ldots \cdots
\smile \frown \wr \triangleleft \triangleright \infty \bot \top  \smile \frown \wr \triangleleft \triangleright \infty \bot \top
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar  \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
Otros
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown  \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge  \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes  \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant  \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot  \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox  \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot  \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq  \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork  \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq  \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid  \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr  \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq  \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq  \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq  \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq

Subíndices, superíndices, integrales

  Sintaxis Cómo se verá
Superíndice a^2  a^2
Subíndice a_2  a_2
Agrupar a^{2+2}  a^{2+2}
a_{i,j}  a_{i,j}
Combinar superindice y subíndice x_2^3  x_2^3
Superíndices y subíndices, anteriores, posteriores, arriba y abajo \sideset {_1^2} {_3^4} \prod_a^b  \sideset {_1^2} {_3^4} \prod_a^b
{}_1^2 \! \Omega_3^4  {}_1^2 \! \Omega_3^4
Apilar \overset { \alpha} { \omega}  \overset { \alpha} { \omega}
\overset { \alpha} { \underset { \gamma} { \omega}}  \overset { \alpha} { \underset { \gamma} { \omega}}
\stackrel { \alpha} { \omega}  \stackrel { \alpha} { \omega}
Derivadas x', y, f', f  x', y'', f', f''
Subrayado, línea superior, vectores \hat a \ \bar b \ \vec c  \hat a \ \bar b \ \vec c
\overrightarrow {a b} \overleftarrow {c d} \widehat {d e f}  \overrightarrow {a b} \overleftarrow {c d} \widehat {d e f}
\overline {g h i} \underline {j k l}  \overline {g h i} \underline {j k l}
Flechas A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C  A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C
Llaves superiores \overbrace{ 1+2+ \cdots+100 } ^ {5050}  \overbrace{ 1+2+ \cdots+100 } ^ {5050}
Llaves inferiores \underbrace { a+b+ \cdots+z }_{26}  \underbrace { a+b+ \cdots+z }_{26}
Sumatorios \sum_{k=1}^N k^2  \sum_{k=1}^N k^2
Productorio \prod_{i=1}^N x_i  \prod_{i=1}^N x_i
Coproducto \coprod_{i=1}^N x_i  \coprod_{i=1}^N x_i
Límite \lim_{n \to \infty}x_n  \lim_{n \to \infty}x_n
Integral \int_{-N}^{N} e^x\, dx \int_{-N}^{N} e^x\, dx
Integral doble \iint_{D}^{W} \, dx\,dy  \iint_{D}^{W} \, dx\,dy
Integral triple \iiint_{E}^{V} \, dx\,dy\,dz  \iiint_{E}^{V} \, dx\,dy\,dz
Integral de línea \oint_{C} x^3\, dx + 4y^2\, dy  \oint_{C} x^3\, dx + 4y^2\, dy
Intersecciones \bigcap_1^{n} p  \bigcap_1^{n} p
Uniones \bigcup_1^{k} p  \bigcup_1^{k} p

Fracciones, matrices, multilíneas

  Sintaxis Cómo se verá
Fracciones \frac{2}{4}=0.5 \frac{2}{4}=0.5
Coeficiente binomial \binom{n}{k} \binom{n}{k}
Matrices \begin{matrix}
x & y \\
z & v
\end{matrix}
 \begin{matrix} x & y \\ z & v \end{matrix}
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
 \begin{vmatrix} x & y \\ z & v \end{vmatrix}
\begin{Vmatrix
x & y \\
z & v
\end{Vmatrix}
 \begin{Vmatrix} x & y \\ z & v \end{Vmatrix}
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
 \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
 \begin{Bmatrix} x & y \\ z & v \end{Bmatrix}
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
 \begin{pmatrix} x & y \\ z & v \end{pmatrix}
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
 \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)
Distinción de casos f(n) =
\begin{cases}
n/2, & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}
 f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}
Ecuaciones multilínea (se debe definir el número de columnas con {lcl}) \begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
 \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}
\begin{array}{lclcl}
z & = & a & = & \sqrt 2\\
f(x,y,z) & = & x + y + z & = & t^2\\
f(z) & = & x+y & = & 2 \pi
\end{array}
 \begin{array}{lclcl}   z        & = & a & = & \sqrt 2\\  f(x,y,z) & = & x + y + z & = & t^2\\ f(z) & = & x+y & = & 2 \pi \end{array}
Romper largas expresiones para hacer más legible el código <math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

 f(x) \,\!  = \sum_{n=0}^ \infty a_n x^n  = a_0+a_1x+a_2x^2+ \cdots

Ecuaciones simultáneas \begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
 \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}

Alfabetos

Alfabeto griego
\Delta \Theta \Lambda  \Delta \Theta \Lambda
\Xi \Pi \Sigma \Xi \Pi \Sigma
\Upsilon \Phi \Psi \Omega  \Upsilon \Phi \Psi \Omega
\alpha \beta \gamma \delta \epsilon \zeta  \alpha \beta \gamma \delta \epsilon \zeta
\eta \theta \iota \kappa \lambda \mu  \eta \theta \iota \kappa \lambda \mu
\nu \xi \pi \rho \sigma \tau  \nu \xi \pi \rho \sigma \tau
\upsilon \phi \chi \psi \omega  \upsilon \phi \chi \psi \omega
\varepsilon \digamma \vartheta \varkappa  \varepsilon \digamma \vartheta \varkappa
\varpi \varrho \varsigma \varphi  \varpi \varrho \varsigma \varphi

Añadiendo paréntesis a grandes expresiones

  Sintaxis Cómo se verá
Mal ( \frac{1}{2} )  ( \frac{1}{2} )
Bien \left ( \frac{1}{2} \right )  \left ( \frac{1} {2} \right )
  Sintaxis Cómo se verá
Paréntesis \left ( \frac{a}{b} \right )  \left ( \frac{a}{b} \right )
Corchetes \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack  \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
Llaves \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace  \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
Barras y dobles barras \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|  \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
Barras invertidas \left / \frac{a}{b} \right \backslash  \left / \frac{a}{b} \right \backslash
Flechas arriba y abajo \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow  \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
Los delimitadores pueden mezclarse \left [ 0,1 \right )  \left [ 0,1 \right )
Usa \left. y \right. si no quieres que un delimitador aparezca \left . \frac{A}{B} \right \} \to X  \left . \frac{A}{B} \right \} \to X
Tamaño de los delimitadores \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]  \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]
\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle  \big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow  \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow  \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash  \big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

Espaciado

Nota: TeX elimina los espacios automáticamente, pero puedes controlarlos manualmente.

  Sintaxis Cómo se verá
Espacio en blanco a\ b  a\ b

Ejemplos

Polinomio cuadrático ax^2 + bx + c = 0\,\!  ax^2 + bx + c = 0\,\!
Fórmula cuadrática x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}  x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
Paréntesis altos y fracciones 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)  2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)
S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}  S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}
Integrales \int_a^x \,dy = \int_a^x f(y)  \int_a^x \,dy = \int_a^x f(y)
Sumatorios \sum_{n=1}^\infty\frac{m^2\,n}{3^m}  \sum_{n=1}^\infty\frac{m^2\,n}{3^m}
Ecuaciones diferenciales u + p(x)u' = f(x),\quad x>a  u'' + p(x)u' = f(x),\quad x>a
Límites \lim_{z\rightarrow z_0} f(z)=f(z_0)  \lim_{z\rightarrow z_0} f(z)=f(z_0)
Casos f(x) = \begin{cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & 0 < x\le 1
\end{cases}
 f(x) = \begin {cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & 0 < x\le 1
</p>
\end {cases}

Para más información visita la ayuda de TeX en Wikipedia

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.