Límite de una función
De Wikillerato
Tabla de contenidos |
Limite de f(x) cuando x tiende a un número real
El límite de la función , cuando tiende a existe y es igual a , si ambos límites laterales existen y son iguales a , es decir
Lo expresamos de la siguiente manera:
El que la anterior igualdad sea cierta significa que podemos hacer tan cercano a como queramos eligiendo lo suficientemente proximo a , por la derecha o por la izquierda.
Limite de f(x) cuando x tiende a infinito
Se dice que el límite de la funcion , cuando tiende a , es si cualquier sucesión que tiende a verifica que .
Lo expresamos como:
[Unparseable or potentially dangerous latex formula. Error 3 ]
El que la anterior igualdad sea cierta significa que podemos hacer tan cercano a como queramos eligiendo lo suficientemente grande.
Limite de f(x) cuando x tiende a menos infinito
Analogamente, se dice que el límite de la funcion , cuando tiende a , es si cualquier sucesión que tiende a verifica que .
Lo expresamos como:
El que la anterior igualdad sea cierta significa que podemos hacer tan cercano a como queramos eligiendo lo suficientemente pequeño.
Aqui, la palabra pequeño ( grande) la utilizamos de la siguiente manera:
es mas pequeño ( grande ) que si y solo si .
Tweet