Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Matriz transpuesta

De Wikillerato

Se llama matriz traspuesta de una matriz   
A
  de dimension   
m \times n
,   a la matriz que se obtiene al cambiar en   
A
  las filas por columnas o las columnas por filas. Se representa por   
A^t
  y su dimension es   
n \times m


Propiedades:


  • 
\left( \, A^t \, \right)^t = A

    • 
\left( \, A + B \, \right)^t = A^t + B^t
 

      • 
\left( \, k \cdot A \, \right)^t = k \cdot A^t 
 

        • 
\left( \, A \cdot B \, \right)^t = B^t \cdot  A^t 
 




          Se llama matriz simetrica a toda matriz cuadrada   
A
  que coincide con su transpuesta:   
A = A^t
.   En una matriz simetrica cualquier par de elementos simetricos respecto a la diagonal principal son iguales.

          Ejemplo:


          
\left(
</p>
<pre> \begin{array}[c]{ccc}
   1 & 2 & 3 
   \\
   2 & 4 & 5
   \\
   3 & 5 & 7
 \end{array}
</pre>
<p>\right)


          Se llama matriz antisimetrica a toda matriz cuadrada   
A
  que coincide con la opuesta de su transpuesta:   
A = -A^t
.   En una matriz simetrica cualquier par de elementos simetricos respecto a la diagonal principal son opuestos.

          Ejemplo:


          
\left(
</p>
<pre> \begin{array}[c]{ccc}
   ~~ 0 & ~~2 & -3 
   \\
   -2 & ~~0 & ~~5
   \\
   ~~ 3 & -5 & ~~0
 \end{array}
</pre>
<p>\right)

             
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.