Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Distribuciones discretas

De Wikillerato

Tabla de contenidos


Función de probabilidad


Denotaremos como   
\mathrm{P}
\left(
</p>
<pre>  \, X \, = \, x_i \,
</pre>
<p>\right)
  a la probabilidad de que la variable aleatoria tome el valor   
x_i
.


Se llama función de probabilidad de una variable aleatoria discreta   
X
a la aplicacion que a cada valor de   
x_i
  de la variable le hace corresponder la probabilidad de que la variable tome dicho valor:



\mathrm{f}
\left(
</p>
<pre>  \, x_i \,
\right)
\, = \,
\mathrm{P}
\left(
   \, X \, = \, x_i \,
\right)
</pre>
<p>


Por definición, deducimos que si   
\left\{
</p>
<pre> \, x_1, \, x_2, \ldots, \, x_n \, 
</pre>
<p>\right\}
  son los valores que puede tomar la variable   
X
, entonces:



\sum_{i \, = \, 1}^n \mathrm{f} \left( \, x_i  \, \right) \, = \, \mathrm{f} \left( \,
</p>
<pre> x_1 \, \right) \, + \, \mathrm{f} \left( \, x_2 \, \right) \, + \,
</pre>
<p>\ldots \, + \, \mathrm{f} \left( \, x_n \, \right) \, = \, 1


ya que esta suma es, en realidad, la probabilidad del suceso seguro.


Ejemplo


En el experimento de lanzar tres monedas al aire, la aplicación   
X
  que asigna a cada resultado el numero de cruces obtenidas es una variable aleatoria. En este caso:



\begin{array}[c]{cc}
\mathrm{f} \left( \, 0 \, \right) \, = \, \mathrm{P}
</p>
<pre>\left(
  \, X \, = \, 0 \,
\right)
\, = \, \frac{1}{8} \qquad
&
\mathrm{f}
\left(
  \, 1 \,
\right)
\, = \, \mathrm{P}
\left(
  \, X \, = \, 1 \,
\right)
\, = \, \frac{3}{8}
\qquad 
\\
& 
\\
\mathrm{f} \left( \, 2 \, \right) \, = \, \mathrm{P}
\left(
  \, X \, = \, 2 \,
\right)
\, = \, \frac{3}{8} \qquad
&
\mathrm{f} \left( \, 3 \, \right) \, = \, \mathrm{P}
\left(
  \, X \, = \, 3 \,
\right)
\, = \, \frac{1}{8} \qquad 
</pre>
<p>\end{array}


Observa que   
\mathrm{f} \left( \, 0 \, \right) \, + \, \mathrm{f} \left( \, 1 \, \right) \, + \, 
\mathrm{f} \left( \, 2 \, \right) \, + \, \mathrm{f} \left( \, 3 \, \right) \, = \, 1


Función de distribución


Dada una variable aleatoria discreta   
X
, su función de distribución es la aplicación que a cada valor de   
x_i
  de la variable le asigna la probabilidad de que ésta tome valores menores o iguales que   
x_i
, y la denotamos por:



\mathrm{F} \left( \, x_i  \, \right) \, = \, \mathrm{P}
\left(
</p>
<pre>  \, X \le x_i \,
</pre>
<p>\right)


La función de distribución de cualquier variable aleatoria discreta tiene las siguentes caracteristicas:


1. Al ser una probabilidad,   
1 \ge \mathrm{F} \leg2 \, x_i  \, \right) \ge 0
.


2.   
\mathrm{F} \left( \, x  \, \right)
  es nula para todo valor de   
x
  menor que el menor valor de la variable aleatoria, y es igual a la unidad para todo valor de   
x
  mayor que el mayor valor de la variable.


3.   
\mathrm{F} \left( \, x  \, \right)
  es creciente.


4.   
\mathrm{F} \left( \, x  \, \right)
  es constante en cada intervalo   
\left(
</p>
<pre>  \, x_i, \, x_{i \, + \, 1} \,
</pre>
<p>\right)
, además es continua a la derecha de   
x_i
  y a la izquierda   
x_{i \, + \, 1}
, y discontinua a la izquierda de   
x_i
  y a la derecha de   
x_{i+1}
, para   
i \, = \, 1, \, \ldots, \, n \, - \, 1
 


5. Sea   
x_j > x_i
, entonces   
\mathrm{F}
\left(
</p>
<pre>  \, x_j \,
\right)
\, - \,
\mathrm{F}
</pre>
<p>\left(
</p>
<pre>  \, x_i \,
\right)
\, = \,
\mathrm{P}
\left(
   \, x_j \ge X > x_i \,
\right)
</pre>
<p>


   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.