Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Lógica proposicional

De Wikillerato

Una de las razones que motivó la aparición de la lógica matemática, fue evitar la ambigüedad del lenguaje natural y transformar el pensamiento en un cálculo, según el modo de operar de las matemáticas. Simplificar o simbolizar las oraciones o juicios para poder operar con ellas, así surge el


Lenguaje formal

Consiste en abreviar o simbolizar las oraciones o juicios, que en la lógica matemática se llaman proposiciones. Estas proposiciones se reducen en el lenguaje formal a una sola letra, que llamamos variable, y la simbolizamos con las letras minúsculas del alfabeto que van de la “p” hasta el final del abecedario.

Si digo por ejemplo:”Antonio ama a Piedad”, esta proposición queda simbolizada en el lenguaje formal mediante la variable “p” o “q”, o “r”, o “s”.

Además de estas variables, la lógica proposicional utiliza otros símbolos, llamados constantes, cuyo significado siempre es el mismo ya que modifican o unen a las variables. Estos símbolos constantes, se llaman funtores, juntores, conectivas u operadores lógicos.

Cuando el funtor afecta a una sola variable, se llama monádico, como por ejemplo el negador ( \bar{ } ) que se lee en el lenguaje natural “no”, y se sitúa encima de la letra variable, \bar{ p} , “no p”. Cuando afectan a más de una variable, son poliádicos. Los funtores más importantes son:

[\land   ] Conjuntor , “ y “ en el lenguaje natural.

[\lor   ] Disyuntor , “ o “.

[\to   ] Condicional, “ si…, entonces”.

[\leftrightarrow   ] Bicondiconal, “ si y sólo si…, entonces”.

[ \overline{\lor   }] Disyunción exclusiva, “o…o”, una proposición excluye a la otra.


El negador además de ser un funtor monádico, es decir que afecta a una variable, puede ser poliádico, cuando afecta a más de una variable o a una expresión entera.

Hay que tener siempre en cuenta, que las variables simbolizan oraciones enteras y no sólo palabras o nombres:

Ejemplos de simbolización de oraciones, del lenguaje natural al lenguaje formal:

1. La conjunción: [ p  \land  q ] “Juan juega y Pedro estudia”.

2. La disyunción: [ p  \lor  q ] “Llueve o nieva”.

3. El condicional: [ p \to  q ] “Si estudias entonces aprendes”.

4. El bicondicional: [ p \leftrightarrow q ] “Si y sólo si tienes dieciocho años puedes votar”.

5. La disyunción exclusiva: [ p  \overline{\lor} q ] “O te quedas o te vas”.

6. La negación: [ \bar{p} ] “Manolo no juega limpio”.

A veces el negador puede afectar a más de una variable o a la conjunción, o disyunción de ambas:

[\overline{p \lor q}   ] “Es falso que estudies o trabajes”.

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.