Lógica proposicional
De Wikillerato
Una de las razones que motivó la aparición de la lógica matemática, fue evitar la ambigüedad del lenguaje natural y transformar el pensamiento en un cálculo, según el modo de operar de las matemáticas. Simplificar o simbolizar las oraciones o juicios para poder operar con ellas, así surge el
Lenguaje formal
Consiste en abreviar o simbolizar las oraciones o juicios, que en la lógica matemática se llaman proposiciones. Estas proposiciones se reducen en el lenguaje formal a una sola letra, que llamamos variable, y la simbolizamos con las letras minúsculas del alfabeto que van de la “p” hasta el final del abecedario.
Si digo por ejemplo:”Antonio ama a Piedad”, esta proposición queda simbolizada en el lenguaje formal mediante la variable “p” o “q”, o “r”, o “s”.
Además de estas variables, la lógica proposicional utiliza otros símbolos, llamados constantes, cuyo significado siempre es el mismo ya que modifican o unen a las variables. Estos símbolos constantes, se llaman funtores, juntores, conectivas u operadores lógicos.
Cuando el funtor afecta a una sola variable, se llama monádico, como por ejemplo el negador ( ) que se lee en el lenguaje natural “no”, y se sitúa encima de la letra variable, , “no p”. Cuando afectan a más de una variable, son poliádicos. Los funtores más importantes son:
Conjuntor , “ y “ en el lenguaje natural.
Disyuntor , “ o “.
Condicional, “ si…, entonces”.
Bicondiconal, “ si y sólo si…, entonces”.
Disyunción exclusiva, “o…o”, una proposición excluye a la otra.
El negador además de ser un funtor monádico, es decir que afecta a una variable, puede ser poliádico, cuando afecta a más de una variable o a una expresión entera.
Hay que tener siempre en cuenta, que las variables simbolizan oraciones enteras y no sólo palabras o nombres:
Ejemplos de simbolización de oraciones, del lenguaje natural al lenguaje formal:
1. La conjunción: “Juan juega y Pedro estudia”.
2. La disyunción: “Llueve o nieva”.
3. El condicional: “Si estudias entonces aprendes”.
4. El bicondicional: “Si y sólo si tienes dieciocho años puedes votar”.
5. La disyunción exclusiva: “O te quedas o te vas”.
6. La negación: “Manolo no juega limpio”.
A veces el negador puede afectar a más de una variable o a la conjunción, o disyunción de ambas:
“Es falso que estudies o trabajes”.
Valores de verdad
En la gramática estamos acostumbrados a ver que la oraciones pueden ser verdaderas o falsas, según se ajusten o no a la realidad que expresan, por ejemplo si llueve y digo que “hace sol”, esa oración es falsa. En cambio la lógica considera que las proposiciones pueden ser verdaderas o falsas con independencia de que en la realidad lo sean; por eso habla de valores de verdad.
Una proposición [ ] puede ser indistintamente verdadera o falsa; cuando es verdadera, le damos valor 1, cuando es falsa, le adjudicamos el valor 0. Según esto la variable , puede tener los siguientes valores:
p
1 1 0 0
1 0 1 0
Cuando p siempre tiene valor 1, hablamos de tautología de p. Cuando siempre es falsa, contradicción de p. Si p es primero verdadera y luego falsa, afirmación de p. Cuando es primero falsa y luego verdadera, negación de p.
Si consideramos los valores de dos variables conjuntamente, las posibilidades aumentan según el gráfico siguiente:
p q
1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0
Las dos primeras columnas indican los cuatro valores posibles que pueden tener dos proposiciones simples, si se consideran sus valores a la vez: las dos verdaderas, la primera verdadera y la segunda falsa, la primera falsa y la segunda verdadera y las dos falsas.
Las restantes dieciséis columnas representan los valores de verdad o falsedad, de cada una de las dieciséis proposiciones de orden dos.
Entre estas proposiciones, hay algunas que tienen especial interés en lógica, según los valores que adoptan las variables cuando están afectadas por funtores:
Tweet