Acentos |
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} |
|
\check{a} \bar{a} \ddot{a} \dot{a} |
|
Funciones estándar |
\sin a \cos b \tan c |
|
\sec d \csc e \cot f |
|
\arcsin h \arccos i \arctan j |
|
\sinh k \cosh l \tanh m \coth n |
|
\lim u \limsup v \liminf w \min x \max y |
|
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g |
|
Derivadas |
\nabla \partial x dx \dot x \ddot y |
|
Conjuntos |
\forall \exists \emptyset \varnothing |
|
\in \ni \notin \subset \subseteq \supset \supseteq |
|
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus |
|
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup |
|
Operadores |
+ \oplus \bigoplus \pm \mp - |
|
\times \otimes \bigotimes \cdot \circ \bullet \bigodot |
|
\star * / \div \frac{1}{2} |
|
Lógica |
\land \wedge \bigwedge \bar{q} \to p |
|
\lor \vee \bigvee \lnot \neg q \And |
|
Raíces |
\sqrt{2} \sqrt[n]{x} |
|
Relaciones |
\sim \approx \simeq \cong |
|
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto |
|
Geometría |
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ |
|
Flechas |
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow |
|
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft |
|
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow |
|
\Longrightarrow \Uparrow \Downarrow \Updownarrow |
|
\nLeftrightarrow \longleftrightarrow |
|
Especial |
\eth \S \P \% \dagger \ddagger \ldots \cdots |
|
\smile \frown \wr \triangleleft \triangleright \infty \bot \top |
|
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar |
|
Otros |
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown |
|
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge |
|
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes |
|
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant |
|
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot |
|
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox |
|
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot |
|
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq |
|
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork |
|
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq |
|
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid |
|
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \ngtr |
|
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq |
|
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq |
|
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq |
|
|
Sintaxis |
Cómo se verá |
Superíndice |
a^2 |
|
Subíndice |
a_2 |
|
Agrupar |
a^{2+2} |
|
a_{i,j} |
|
Combinar superindice y subíndice |
x_2^3 |
|
Superíndices y subíndices, anteriores, posteriores, arriba y abajo |
\sideset {_1^2} {_3^4} \prod_a^b |
|
{}_1^2 \! \Omega_3^4 |
|
Apilar |
\overset { \alpha} { \omega} |
|
\overset { \alpha} { \underset { \gamma} { \omega}} |
|
\stackrel { \alpha} { \omega} |
|
Derivadas |
x', y, f', f |
|
Subrayado, línea superior, vectores |
\hat a \ \bar b \ \vec c |
|
\overrightarrow {a b} \overleftarrow {c d} \widehat {d e f} |
|
\overline {g h i} \underline {j k l} |
|
Flechas |
A \xleftarrow {n+ \mu-1} B \xrightarrow[T] {n \pm i-1} C |
|
Llaves superiores |
\overbrace{ 1+2+ \cdots+100 } ^ {5050} |
|
Llaves inferiores |
\underbrace { a+b+ \cdots+z }_{26} |
|
Sumatorios |
\sum_{k=1}^N k^2 |
|
Productorio |
\prod_{i=1}^N x_i |
|
Coproducto |
\coprod_{i=1}^N x_i |
|
Límite |
\lim_{n \to \infty}x_n |
|
Integral |
\int_{-N}^{N} e^x\, dx |
|
Integral doble |
\iint_{D}^{W} \, dx\,dy |
|
Integral triple |
\iiint_{E}^{V} \, dx\,dy\,dz |
|
Integral de línea |
\oint_{C} x^3\, dx + 4y^2\, dy |
|
Intersecciones |
\bigcap_1^{n} p |
|
Uniones |
\bigcup_1^{k} p |
|