Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Matriz transpuesta

De Wikillerato

Definición de matriz


Una matriz es un cuadrado o tabla de numeros ordenados. Se llama matriz de dimension   
m \times n 
  a un conjunto de números reales dispuestos en   
m
  filas y   
n
  columnas de la siguiente forma  



\left(
</p>
<pre> \begin{array}[c]{cccc}
   a_{11 }& a_{12} & \ldots &  a_{1n}
   \\
   a_{21 }& a_{22} & \ldots &  a_{2n}
   \\
   \vdots & \vdots & \ddots & \vdots
   \\
   a_{m1 }& a_{m2} & \ldots &  a_{mn}
 \end{array}
</pre>
<p>\right)


La matriz   
A 
  se puede designar tambien como   
\quad A = \left( a_{ij} \right) \quad
  donde



\left\{
</p>
<pre> \begin{array}[c]{l}
   i = 1, \, 2, \, \ldots, \, m
   \\
   j = 1, \, 2, \, \ldots, \, n
 \end{array}
</pre>
<p>\right.


Un elemento generico de la matriz se designa por   
a_{ij}
  en el cual el subindice   
i
  representa el numero de fila que ocupa el elemento y el subindice   
j
  el numero de columna.

El conjunto de matrices de dimension   
m \times n
  se denota por:



M_{m \times n}


El conjunto de matrices de dimension   
n \times n
,   tambien llamadas de orden   
n
,   se denota por:



M_n


Las matrices de este conjunto se llaman matrices cuadradas y en ellas definimos:

  • la diagonal principal formada por los elementos de la forma  


a_{ii}
 

  • la diagonal secundaria formada por los elementos de la forma  


a_{ij}
  tales que   
i + j = n + 1


Image:diagonales2.gif


Una matriz rectangular es aquella que tiene distinto número de filas que de columnas   
\left(
</p>
<pre> m \neq n
</pre>
<p>\right)
.

Ejemplo de matriz rectangular



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & -1 & ~~0
     \\
     2 & ~~3 & -1
   \end{array}
 \right)
</pre>
<p>


Matriz fila es toda matriz rectangular con una sola fila de dimension   
1 \times n
.

Ejemplo de matriz fila



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     -1 & 3 & 5 
   \end{array}
 \right)
</pre>
<p>


Matriz columna es toda matriz rectangular con una sola columna de dimension   
m \times 1
.

Ejemplo de matriz columna



</p>
<pre> \left(
   \begin{array}[c]{c}
     -1 
     \\
     ~~3
   \end{array}
 \right)
</pre>
<p>


Una matriz nula es una matriz rectangular con todos sus elementos nulos. Se denota por   
\mathbf{0}
.

Ejemplo de matriz nula



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     0 & 0 & 0
     \\
     0 & 0 & 0
   \end{array}
 \right)
</pre>
<p>


Matriz triangular superior es toda matriz cuadrada en la que todos los terminos situados por debajo de la diagonal principal son ceros.

Ejemplo de matriz triangular superior



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & -1 & ~~0
     \\
     0 & ~~3 & -1
     \\
     0  & ~~0 & ~~2
   \end{array}
 \right)
</pre>
<p>


Matriz triangular inferior es toda matriz cuadrada en la que todos los terminos situados por encima de la diagonal principal son ceros.

Ejemplo de matriz triangular inferior



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     2 & ~~0 & 0 
     \\
     3 & -1 & 0
     \\
     1 & -1 & 3
   \end{array}
 \right)
</pre>
<p>


Matriz diagonal es toda matriz cuadrada en la que todos los terminos no situados en la diagonal principal son ceros.

Ejemplo de matriz diagonal



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     ~~2 & ~~0 & ~~0 
     \\
     ~~0 & -1 & ~~0
     \\
     ~~0 & ~~0 & ~~3
   \end{array}
 \right)
</pre>
<p>


Matriz escalar es toda matriz diagonal en la que todos los terminos de la diagonal principal son iguales.

Ejemplo de matriz escalar



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     2 & {0} & {0} 
     \\
     {0} & 2 & {0}
     \\
     {0} & {0} & 2
   \end{array}
 \right)
</pre>
<p>


Matriz unidad o identidad es la matriz escalar cuyos elementos de la diagonal principal son todos 1.

Ejemplo de matriz unidad



</p>
<pre> \left(
   \begin{array}[c]{ccc}
     1 & {0} & {0} 
     \\
     {0} & 1 & {0}
     \\
     {0} & {0} & 1
   \end{array}
 \right)
</pre>
<p>


%% }}} %% {{{ =Operaciones elementales con matrices

Suma de matrices


Para dos matrices   
A = \left( a_{ij} \right)
  y   
B = \left( b_{ij} \right)
  de la misma dimension   
m \times n
,   la suma de   
A
  y   
B
  es la matriz de la misma dimension   
m \times n
,   dada por



A + B = \left( a_{ij} \right) + \left( b_{ij} \right) = \left( a_{ij} + b_{ij} \right)


Ejemplo



A + B = 
\left(
</p>
<pre> \begin{array}[c]{ccc}
   a_{11 }& a_{12} & a_{13}
   \\
   a_{21 }& a_{22} & a_{23}
   \\
   a_{31 }& a_{32} & a_{33}
 \end{array}
</pre>
<p>\right)
+
\left(
</p>
<pre> \begin{array}[c]{ccc}
   b_{11 }& b_{12} & b_{13}
   \\
   b_{21 }& b_{22} & b_{23}
   \\
   b_{31 }& b_{32} & b_{33}
 \end{array}
</pre>
<p>\right)
=
\left(
</p>
<pre> \begin{array}[c]{ccc}
   a_{11 } + b_{11 } & a_{12} + b_{12} & a_{13} + b_{13}
   \\
   a_{21 } + b_{21 } & a_{22} + b_{22} & a_{23} + b_{23}
   \\
   a_{31 } + b_{31 } & a_{32} + b_{32} & a_{33} + b_{33}
 \end{array}
</pre>
<p>\right)


Propiedades de la suma de matrices


1. Asociativa



A + 
\left(
</p>
<pre> B + C
</pre>
<p>\right)
=
\left(
</p>
<pre> A + B
</pre>
<p>\right)
+ C


2. Elemento neutro. La matriz nula,   
0,
  de la dimension correspondiente es el elemento neutro para la suma, ya que:



A + 0 = 0 + A = A


3. Elemento opuesto. Para la matriz   
A
  existe otra matriz que denotamos por   
-A
  y que llamamos matriz opuesta de   
A,
  que cumple:



A +
\left(
</p>
<pre> -A
</pre>
<p>\right)
</p>
<pre>= 0
</pre>
<p>


4. Comutativa



A + B = B + A


Producto de un numero por una matriz


Para un número real   
k
  y una matriz   
A = \left( a_{ij} \right)}
  de dimension   
m \times n
,   el producto de un número real por una matriz es la matriz de la misma dimension   
m \times n
  dada por



k \cdot A = k \cdot \left( a_{ij} \right) = \left( k \cdot a_{ij} \right)


Es decir, el producto   
k \cdot A 
  se obtiene multiplicando el numero real por cada uno de los elementos de la matriz.


Ejemplo



k \cdot A  = k \cdot
\left(
</p>
<pre> \begin{array}[c]{cc}
   a_{11 }& a_{12} 
   \\
   a_{21 }& a_{22} 
   \\
   a_{31 }& a_{32} 
 \end{array}
</pre>
<p>\right)
=
\left(
</p>
<pre> \begin{array}[c]{cc}
   k \cdot a_{11 }& k \cdot a_{12} 
   \\
   k \cdot a_{21 }& k \cdot a_{22} 
   \\
   k \cdot a_{31 }& k \cdot a_{32} 
 \end{array}
</pre>
<p>\right)


Producto de matrices


El producto de dos matrices   
A = \left( a_{ij} \right)
  de dimension   
m \times n
  y   
B = \left( b_{ij} \right)
  de dimension   
n \times p
,   es la matriz   
A \cdot B
  dada por:



A \cdot B = \left( c_{ij} \right)


con



</p>
<pre>c_{ij} = \sum_{j = 1}^n a_{ij} \cdot b_{jk}
</pre>
<p>


Es decir, cada elemento   
c_{ik}
  se obtiene multiplicando la fila i-ésima de la primera matriz por la columna k-ésima de la segunda matriz.


Ejemplo



\left(
</p>
<pre> \begin{array}[c]{ccc}
   1 & 2 & 3 
   \\
   4 & 5 & 6 
 \end{array}
</pre>
<p>\right)
\cdot
\left(
</p>
<pre> \begin{array}[c]{cc}
   ~~7 & ~~8
   \\
   ~~9 & ~~0
   \\
   -1 & -2
 \end{array}
</pre>
<p>\right)
=
\left(
</p>
<pre> \begin{array}[c]{cc}
   1 \cdot 7 + 2 \cdot 9 + 3 \cdot \left( -1 \right) & 1 \cdot 8 + 2 \cdot 0 + 3 \cdot \left( -2 \right)
   \\
   4 \cdot 7 + 5 \cdot 9 + 6 \cdot \left( -1 \right) & 4 \cdot 8 + 5 \cdot 0 + 6 \cdot \left( -2 \right)
 \end{array}
</pre>
<p>\right)


Propiedades del producto de matrices


1. El producto de matrices cuadradas es asociativo:



A \cdot
\left(
</p>
<pre> B \cdot C
</pre>
<p>\right)
=
\left(
</p>
<pre> A \cdot B
</pre>
<p>\right)
\cdot C


2. El producto de matrices cuadradas de orden   
n
  posee como elemento neutro la matriz unidad o identidad   
I
  de orden   
n
  ya que:



A \cdot I = I \cdot A = A


3. El producto de matrices cuadradas es distributivo respecto de la suma de matrices:



A \cdot
\left(
</p>
<pre> B + C
</pre>
<p>\right)
</p>
<pre>= A \cdot B + A \cdot C
</pre>
<p>


%% }}} %% {{{ =Matriz transpuesta

Definición


Se llama matriz traspuesta de una matriz   
A
  de dimension   
m \times n
,   a la matriz que se obtiene al cambiar en   
A
  las filas por columnas o las columnas por filas. Se representa por   
A^t
  y su dimension es   
n \times m


Propiedades


 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.