Funciones crecientes y decrecientes
De Wikillerato
(→Función estrictamente creciente en un intervalo) |
|||
Línea 3: | Línea 3: | ||
<br/> | <br/> | ||
- | + | Una función | |
<math> | <math> | ||
\mathrm{f} \left( \, x \, \right) | \mathrm{f} \left( \, x \, \right) | ||
</math> | </math> | ||
- | es '''''estrictamente creciente''''' en un intervalo | + | es '''''estrictamente creciente''''' en un intervalo |
<math> | <math> | ||
\left( | \left( | ||
Línea 111: | Línea 111: | ||
<br/> | <br/> | ||
- | Una | + | Una función |
<math> | <math> | ||
\mathrm{f} \left( \, x \, \right) | \mathrm{f} \left( \, x \, \right) |
Revisión de 10:12 5 ene 2009
Tabla de contenidos |
Función estrictamente creciente en un intervalo
Una función es estrictamente creciente en un intervalo , si para dos valores cualesquiera del intervalo, y , se cumple que:
Cuando en la gráfica de una función estrictamente creciente nos movemos hacia la derecha tambien nos movemos hacia arriba:
Una función es estrictamente creciente en el punto de abcisa si existe algun número positivo tal que es estrictamente creciente en el intervalo .
De esta esta definición se deduce que si es derivable en y es estrictamente creciente en el punto de abcisa , entonces .
Función creciente en un intervalo
Una función es creciente en un intervalo , si para dos valores cualesquiera del intervalo, y , se cumple que:
Función estrictamente decreciente en un intervalo
Una función es estrictamente decreciente en un intervalo , si para dos valores cualesquiera del intervalo, y , se cumple que:
Cuando en la gráfica de una función estrictamente decreciente nos movemos hacia la derecha tambien nos movemos hacia abajo:
Una función es estrictamente decreciente en el punto de abcisa si existe algun número positivo tal que es estrictamente decreciente en el intervalo .
De esta esta definición se deduce que si es derivable en y es estrictamente decreciente en el punto de abcisa , entonces .
Función decreciente en un intervalo
Una función es decreciente en un intervalo , si para dos valores cualesquiera del intervalo, y , se cumple que: