Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Funciones acotadas

De Wikillerato

(Diferencias entre revisiones)
(Definición)
Revisión actual (14:14 10 jul 2012) (editar) (deshacer)
(Ejemplo)
 
(Una edición intermedia no se muestra.)
Línea 47: Línea 47:
<center>
<center>
<math>
<math>
-
\left[ \, 2, \, 9 \, \right) \subset \mathbb{R}
+
\left[ \, 2, \, 9 \, \right] \subset \mathbb{R}
</math>
</math>
</center>
</center>
Línea 53: Línea 53:
<center>
<center>
<math>
<math>
-
9 \ge x, \, \forall x \in \left[ \, 2, \, 9 \, \right)
+
9 \ge x, \, \forall x \in \left[ \, 2, \, 9 \, \right]
</math>
</math>
</center>
</center>
Línea 59: Línea 59:
<center>
<center>
<math>
<math>
-
x \ge 2, \, \forall x \in \left[ \, 2, \, 9 \, \right)
+
x \ge 2, \, \forall x \in \left[ \, 2, \, 9 \, \right]
</math>
</math>
</center>
</center>
Línea 69: Línea 69:
<br/>
<br/>
-
Una función son geys
+
Una función
 +
<math>
 +
\mathrm{f}
 +
</math>
está acotada superiormente si su recorrido está acotado superiormente, es decir,
está acotada superiormente si su recorrido está acotado superiormente, es decir,
si existe un número
si existe un número

Revisión actual


Tabla de contenidos

Definición


Se dice que un conjunto 
A
de números reales está acotado superiormente ( inferiormente ) si existe un número real 
C
que es mayor ( menor ) o igual que todos los elementos de 
A
.


A este número real se le llama cota superior ( inferior ). Si 
C
es una cota superior del conjunto 
A
, entonces, cualquier numero mayor ( menor ) que 
C
es tambien una cota superior ( inferior ) de 
A

Ejemplo


El intervalo


\left[ \, 2, \, 9 \, \right] \subset \mathbb{R}

es un conjunto acotado superiormente porque


9 \ge x, \, \forall x \in \left[ \, 2, \, 9 \, \right]

Tambien está acotado inferiormente porque


x \ge 2, \, \forall x \in \left[ \, 2, \, 9 \, \right]


Definición


Una función 
\mathrm{f}
está acotada superiormente si su recorrido está acotado superiormente, es decir, si existe un número 
C
tal que


C \ge \mathrm{f} \left( \, x \, \right), \, \forall x 
en el dominio de 
\mathrm{f}

Análogamente, 
\mathrm{f}
está acotada inferiormente si su recorrido está acotado inferiormente, es decir, si existe un número 
c
  tal que


\mathrm{f} \left( \, x \, \right) \ge c, \, \forall x
en el dominio de 
\mathrm{f}

Una función acotada es aquella que está acotada superior e inferiormente.


Ejemplo


El recorrido de la función   
\mathrm{f} \left( \, x \, \right) = \cos \left( \, x \, \right)
  es el intervalo cerrado   
\left[ \, -1, \, 1 \, \right]
.   Como este intervalo está acotado, tanto superior como inferiormente, la función 
\mathrm{f}
está acotada tanto superior como inferiormente, es decir, la función 
</p>
<pre>\mathrm{f}
</pre>
<p> está acotada.


Propiedades


Propiedad 1


En la gráfica de 
f
, el que 
f
esté acotada superiormente ( inferiormente ) se traduce en que existe una linea horizontal ( paralela al eje 
X
), tal que ningun punto de la gráfica se encuentra por encima ( debajo ) de dicha recta.


Propiedad 2


Una función 
\mathrm{f}
con una asíntota vertical no puede estar acotada, pero puede estar acotada superior o inferiormente.


Mas concretamente:

  1. Si existe un número real


a
, tal que   
\lim_{x \to a^-} \mathrm{f} \left( \, x \, \right) = \infty 
  o   
\lim_{x \to a^+} \mathrm{f} \left( \, x \, \right) = \infty 
,   entonces 
\mathrm{f}
no está acotada superiormente.

  1. Recíprocamente, si existe un número real


a
, tal que   
\lim_{x \to a^-} \mathrm{f} \left( \, x \, \right) = -\infty 
  o   
\lim_{x \to a^+} \mathrm{f} \left( \, x \, \right) = -\infty 
,   entonces 
\mathrm{f}
no está acotada inferiormente.


Propiedad 3


Si   
\lim_{x \to \infty} \mathrm{f} \left( \, x \, \right) = \infty 
  o   
\lim_{x \to -\infty} \mathrm{f} \left( \, x \, \right) = \infty 
,   entonces 
\mathrm{f}
NO está acotada superiormente.


Si   
\lim_{x \to \infty} \mathrm{f} \left( \, x \, \right) = -\infty 
  o   
\lim_{x \to -\infty} \mathrm{f} \left( \, x \, \right) = -\infty 
,   entonces 
\mathrm{f}
NO está acotada inferiormente.


Ejemplo


La función


\mathrm{f} \left( \, x \, \right) = \frac{1}{x}

tiene una asíntota vertical de ecuación   
x = 0
.   Por lo tanto, la función 
\mathrm{f}
no está acotada.


Para averiguar si está acotada superior o inferiormente, calculamos cada uno de los siguientes limites laterales:


\lim_{x \to 0^-} \mathrm{f} \left( \, x \, \right)

y


\lim_{x \to 0^+} \mathrm{f} \left( \, x \, \right)

El primero es   
-\infty
  y el segundo es   
\infty
.   Por lo tanto,   
\mathrm{f}
  no está acotada ni superior, ni inferiormente.


Ejemplo



\lim_{x \to \infty} x^2 = \infty

Por lo tanto,   
\mathrm{f} \left( \, x \, \right) = x^2
  no está acotada superiormente.


Ejemplo


Máximos y mínimos


Un conjunto de números reales acotado superiormente 
A
tiene máximo si la menor de las cotas superiores de 
A
pertenece a 
A
. El máximo de 
A
sería, de existir, la menor de las cotas superiores de 
A
.


Ejemplo


El intervalo   
\left( \, -\infty, \, 2 \, \right)
  está acotado superiormente, pero no tiene máximo, ya que la mayor de las cotas superiores es 2 que NO pertenece a dicho intervalo.


Ejemplo


El intervalo   
\left( \, -\infty, \, 2 \, \right]
  está acotado superiormente y tiene máximo, ya que la mayor de las cotas superiores es 2 que SI pertenece al intervalo.


Máximos y mínimos absolutos de una función


Una función 
\mathrm{f}
se dice que alcanza el valor máximo en   
x_M
  y que dicho valor máximo es   
\mathrm{f} \left( \, x_M \, \right)
,   si


\mathrm{f} \left( \, x_M \, \right) \ge \mathrm{f} \left( \, x \, \right), \,
\forall x 
  en el dominio de 
\mathrm{f}

Recíprocamente, 
\mathrm{f}
alcanza su valor mínimo en   
x_m
  y su valor mínimo es   
\mathrm{f} \left( \, x_m \, \right)
,   si


\mathrm{f} \left( \, x \, \right) \ge \mathrm{f} \left( \, x_m \, \right), \,
\forall x 
  en el dominio de 
\mathrm{f}

Por lo tanto el valor máximo ( mínimo ) que alcanza una función es el máximo ( mínimo ) de su recorrido.


Si cuando


y_2 > y_1

decimos que el "punto   
\left( \, x_2, \, y_2 \, \right)
  está mas alto que el punto  
\left( \, x_1, \, y_1 \, \right)
", entonces el máximo absoluto de 
\mathrm{f}
correspondería al punto mas "alto" de su gráfica y el mínimo absoluto de 
\mathrm{f}
correspondería al punto mas "bajo" de su gráfica.

 

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.