Funciones crecientes y decrecientes
De Wikillerato
(→Función decreciente en un intervalo) |
|||
(37 ediciones intermedias no se muestran.) | |||
Línea 270: | Línea 270: | ||
x_2 | x_2 | ||
</math> | </math> | ||
- | , se cumple que | + | , se cumple que: |
<br/> | <br/> | ||
Línea 280: | Línea 280: | ||
</math> | </math> | ||
</center> | </center> | ||
+ | |||
== Véase también == | == Véase también == |
Revisión actual
Tabla de contenidos[ocultar] |
Función estrictamente creciente en un intervalo
Una función
es estrictamente creciente en un intervalo
, si para dos valores cualesquiera del intervalo,
y
, se cumple que:
Cuando en la gráfica de una función estrictamente creciente nos movemos hacia la derecha tambien nos movemos hacia arriba:
Una función
es estrictamente creciente en el punto de abcisa
si existe algun número positivo
tal que
es estrictamente creciente en el intervalo
.
De esta esta definición se deduce que si
es derivable en
y
es estrictamente creciente en el punto de abcisa
, entonces
.
Función creciente en un intervalo
Una función
es creciente en un intervalo
, si para dos valores cualesquiera del intervalo,
y
, se cumple que:
Función estrictamente decreciente en un intervalo
Una función
es estrictamente decreciente en un intervalo
, si para dos valores cualesquiera del intervalo,
y
, se cumple que:
Cuando en la gráfica de una función estrictamente decreciente nos movemos hacia la derecha tambien nos movemos hacia abajo:
Una función
es estrictamente decreciente en el punto de abcisa
si existe algun número positivo
tal que
es estrictamente decreciente en el intervalo
.
De esta esta definición se deduce que si
es derivable en
y
es estrictamente decreciente en el punto de abcisa
, entonces
.
Función decreciente en un intervalo
Una función
es decreciente en un intervalo
, si para dos valores cualesquiera del intervalo,
y
, se cumple que:
Véase también
