Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

La derivada como una tasa de variación instantánea

De Wikillerato

(Diferencias entre revisiones)
Línea 132: Línea 132:
<br/>
<br/>
-
que es precisamente la derivada de la función &nbsp;
+
que es precisamente la [[Definición de derivada|derivada]] de la función &nbsp;
<math>
<math>
f
f

Revisión de 16:54 11 ene 2007

Tasa de variación media


Supongamos que un coche de formula uno se mueve en una carretera totalmente recta. A distintas distancias de la salida se registran los tiempos de paso, obteniendose la siguiente tabla:


Imagen:tabla7.png


En este caso, la posición,   
y
, se puede ver como una función,   
\mathrm{f}
, del tiempo,   
x
. Es decir:



y \, = \, \mathrm{f} \left( \, x  \, \right)


La tasa de variación media de la posición en el intervalo de tiempo desde el instante   
9
  al instante   
13.4
  es:


[Unparseable or potentially dangerous latex formula. Error 3 ]


En general, la tasa de variación media de la función   
\mathrm{f}
  en   
\left[
</p>
<pre>  \, a, \, b \,
</pre>
<p>\right]
  se define como el cociente:



\frac{\mathrm{f} \left( \, b  \, \right) \, - \, \mathrm{f} \left( \, a  \,
</p>
<pre> \right)}{b \, - \, a}
</pre>
<p>


Tasa de variación instantánea


La tasa de variación instantánea de la función   
f
  en el punto   
x \, = \, a
  se obtiene haciendo tender   
b
  a   
a
  en la tasa de variación media de la función   
f
  en el intervalo   
\left[
</p>
<pre>  \, a, \, b \,
</pre>
<p>\right]
; por tanto, la tasa de variación instantánea de la función   
f
  en el punto   
x \, = \, a
  es



\lim_{h \to 0}\frac{\mathrm{f}\left( \, a \, + \, h \, \right) \, - \, \mathrm{f}\left( \, a \, \right)}{h}


que es precisamente la derivada de la función   
f
  en el punto   
x \, = \, a
.


   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.