Funciones crecientes y decrecientes
De Wikillerato
(→Función estrictamente creciente en un intervalo) |
m (Revertidas las ediciones realizadas por 189.132.193.70 (Talk); a la última edición de Laura.2mdc) |
||
Línea 44: | Línea 44: | ||
<br/> | <br/> | ||
- | Cuando en la gráfica de una | + | Cuando en la gráfica de una función estrictamente creciente nos movemos hacia la derecha |
tambien nos movemos hacia arriba: | tambien nos movemos hacia arriba: | ||
Revisión de 08:07 23 feb 2010
Tabla de contenidos |
Función estrictamente creciente en un intervalo
Una función es estrictamente creciente en un intervalo , si para dos valores cualesquiera del intervalo, y , se cumple que:
Cuando en la gráfica de una función estrictamente creciente nos movemos hacia la derecha tambien nos movemos hacia arriba:
Una función es estrictamente creciente en el punto de abcisa si existe algun número positivo tal que es estrictamente creciente en el intervalo .
De esta esta definición se deduce que si es derivable en y es estrictamente creciente en el punto de abcisa , entonces .
Función creciente en un intervalo
Una función es creciente en un intervalo , si para dos valores cualesquiera del intervalo, y , se cumple que:
Función estrictamente decreciente en un intervalo
Una función es estrictamente decreciente en un intervalo , si para dos valores cualesquiera del intervalo, y , se cumple que:
Cuando en la gráfica de una función estrictamente decreciente nos movemos hacia la derecha tambien nos movemos hacia abajo:
Una función es estrictamente decreciente en el punto de abcisa si existe algun número positivo tal que es estrictamente decreciente en el intervalo .
De esta esta definición se deduce que si es derivable en y es estrictamente decreciente en el punto de abcisa , entonces .
Función decreciente en un intervalo
Una función es decreciente en un intervalo , si para dos valores cualesquiera del intervalo, y , se cumple que: