Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Funciones y gráficas

De Wikillerato

(Diferencias entre revisiones)
Línea 1: Línea 1:
 +
==Definición==
==Definición==
Línea 11: Línea 12:
x
x
</math>
</math>
-
&nbsp; de un subconjunto no vacío &nbsp;
+
&nbsp; de un subconjunto no vacio &nbsp;
<math>
<math>
D
D
Línea 69: Línea 70:
<br/>
<br/>
-
Una función se define '''''explícitamente''''' si viene dada como &nbsp;
+
Una función se define '''''explicitamente''''' si viene dada como &nbsp;
<math>
<math>
y \, = \, \mathrm{f} \left( \, x \, \right)
y \, = \, \mathrm{f} \left( \, x \, \right)
Línea 77: Línea 78:
y
y
</math>
</math>
-
, esta despejada.
+
, está despejada.
<br/>
<br/>
Línea 89: Línea 90:
\, = \, 0
\, = \, 0
</math>
</math>
-
, esto es, si la función se expone como una expresión algebraica igualada a cero.
+
, esto es, si la función se define mediante una expresión algebraica igualada a cero.
<br/>
<br/>
Línea 162: Línea 163:
<br/>
<br/>
 +
 +
==Características de una función==
 +
 +
Las características mas importantes de una función son:
 +
 +
# [[Dominio y recorrido|Dominio y recorrido.]]
 +
 +
# [[Periodicidad|Existencia o no de periodicidad.]]
 +
 +
# [[Simetrías|Existencia o no de simetrías.]]
 +
 +
# [[Funciones acotadas|Acotada o no acotada ( superior y/o inferiormente ).]]
 +
 +
# [[Extremos relativos|Existencia o no de extremos relativos.]]
 +
 +
# [[Funciones acotadas|Existencia o no de extremos absolutos.]]
 +
 +
# [[Continuidad|Puntos de discontinuidad.]]
 +
 +
# [[Puntos de corte con los ejes de coordenadas|Puntos de corte con los ejes de coordenadas.]]
 +
 +
# [[Signo de la función|Signo de la función ( para que valores de la variable independiente la función
 +
es positiva y para que valores es negativa ).]]
 +
 +
# [[Crecimiento y decrecimiento|Donde la función es creciente y donde decreciente.]]
 +
 +
# [[Cancavidad y convexidad|Concavidad y convexidad.]]
 +
 +
# [[Asintotas|Asíntotas ( horizontales, verticales y oblicuas ).]]
 +
 +
La representación gráfica de una función se lleva a cabao para
 +
visualizar de golpe las características mas importantes de dicha función, por eso, antes de dibujar la gráfica de la función es
 +
importante determinar analiticamente cuales son esas características.
[[Category:Matemáticas]]
[[Category:Matemáticas]]

Revisión de 21:15 1 ago 2010

Tabla de contenidos

Definición


Una función real de variable real es toda correspondencia   
\mathrm{f}
  que asocia a cada elemento   
x
  de un subconjunto no vacio   
D
  de   
R
  un único número real. La expresamos como:



\mathrm{f}: D \subset R \longrightarrow R



x \longrightarrow y \, = \, \mathrm{f} \left( \, x  \, \right)


  
x
  es la variable independiente   e   
y
  la variable dependiente.


Al conjunto,   
D
, de valores que toma la variable independiente   
x
  se le llama dominio de la función.


Al conjunto de valores que toma la variable dependiente   
y
  se le llama recorrido de la función.


Una función se define explicitamente si viene dada como   
y \, = \, \mathrm{f} \left( \, x  \, \right)
, es decir, si la variable dependiente,   
y
, está despejada.


Una función se define implícitamente si viene dada en la forma   
\mathrm{f}
\left(
</p>
<pre> \, x, \, y \,
</pre>
<p>\right)
\, = \, 0 
, esto es, si la función se define mediante una expresión algebraica igualada a cero.


Ejemplo


La función   
y \, = \, \cos \left( \, x  \, \right)
  está expresada en forma explícita.


La función   
\log y \, - \, x \, = \, 0
  está expresada en forma implícita.


Gráfica


La gráfica de una función   
\mathrm{f}
  es el conjunto de puntos del plano definido de la siguiente forma:



\left\{
</p>
<pre> \left(
   \, x, \, y \,
 \right)
 \in R^2 \,
 \left|
   \, y \, = \, \mathrm{f} \left( \, x  \, \right) 
 \right.
</pre>
<p>\right\}


Ejemplo


La figura de abajo muestra la gráfica de la funcion   
\mathrm{f} \left( \, x  \, \right) \, = \, \frac{x^4}{4}
  y cuatro puntos de la misma:


 


Imagen:funcion.png


Características de una función

Las características mas importantes de una función son:

  1. Dominio y recorrido.
  1. Existencia o no de periodicidad.
  1. Existencia o no de simetrías.
  1. Acotada o no acotada ( superior y/o inferiormente ).
  1. Existencia o no de extremos relativos.
  1. Existencia o no de extremos absolutos.
  1. Puntos de discontinuidad.
  1. Puntos de corte con los ejes de coordenadas.
  1. Signo de la función ( para que valores de la variable independiente la función es positiva y para que valores es negativa ).
  1. Donde la función es creciente y donde decreciente.
  1. Concavidad y convexidad.
  1. Asíntotas ( horizontales, verticales y oblicuas ).

La representación gráfica de una función se lleva a cabao para visualizar de golpe las características mas importantes de dicha función, por eso, antes de dibujar la gráfica de la función es importante determinar analiticamente cuales son esas características.

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.