Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Funciones y gráficas

De Wikillerato

(Diferencias entre revisiones)
(Gráfica)
Línea 147: Línea 147:
La figura de abajo muestra la gráfica de la funcion  
La figura de abajo muestra la gráfica de la funcion  
<math>
<math>
-
\mathrm{f} \left( \, x \, \right) \, = \, \frac{x^2}
+
\mathrm{f} \left( \, x \, \right) \, = \, \frac{x=y}
</math>
</math>
&nbsp; y cuatro puntos de la misma:
&nbsp; y cuatro puntos de la misma:

Revisión de 19:14 22 oct 2010

Tabla de contenidos

Definición


Una función real de variable real es toda correspondencia   
\mathrm{f}
  que asocia a cada elemento   
x
  de un subconjunto no vacio   
D
  de   
R
  un único número real. La expresamos como:



\mathrm{f}: D \subset R \longrightarrow R



x \longrightarrow y \, = \, \mathrm{f} \left( \, x  \, \right)


  
x
  es la variable independiente   e   
y
  la variable dependiente.


Al conjunto,   
D
, de valores que toma la variable independiente   
x
  se le llama dominio de la función.


Al conjunto de valores que toma la variable dependiente   
y
  se le llama recorrido de la función.


Una función se define explicitamente si viene dada como   
y \, = \, \mathrm{f} \left( \, x  \, \right)
, es decir, si la variable dependiente,   
y
, está despejada.


Una función se define implícitamente si viene dada en la forma   
\mathrm{f}
\left(
</p>
<pre> \, x, \, y \,
</pre>
<p>\right)
\, = \, 0 
, esto es, si la función se define mediante una expresión algebraica igualada a cero.


Ejemplo


La función   
y \, = \, \cos \left( \, x  \, \right)
  está expresada en forma explícita.


La función   
\log y \, - \, x \, = \, 0
  está expresada en forma implícita.


Gráfica


La gráfica de una función   
\mathrm{f}
  es el conjunto de puntos del plano definido de la siguiente forma:



\left\{
</p>
<pre> \left(
   \, x, \, y \,
 \right)
 \in R^2 \,
 \left|
   \, y \, = \, \mathrm{f} \left( \, x  \, \right) 
 \right.
</pre>
<p>\right\}


Ejemplo


La figura de abajo muestra la gráfica de la funcion   
\mathrm{f} \left( \, x  \, \right) \, = \, \frac{x=y}
  y cuatro puntos de la misma:


 


Imagen:funcion.png


Características de una función

Las características mas importantes de una función son:

  1. Dominio y recorrido.
  1. Existencia o no de periodicidad.
  1. Existencia o no de simetrías.
  1. Acotada o no acotada ( superior y/o inferiormente ).
  1. Existencia o no de extremos relativos.
  1. Existencia o no de extremos absolutos.
  1. Puntos de discontinuidad.
  1. Puntos de corte con los ejes de coordenadas.
  1. Signo de la función.
  1. Donde la función es creciente y donde decreciente.
  1. Concavidad y convexidad.
  1. Asíntotas ( horizontales, verticales y oblicuas ).

La representación gráfica de una función se lleva a cabao para visualizar de golpe las características mas importantes de dicha función, por eso, antes de dibujar la gráfica de la función es importante determinar analiticamente cuales son esas características.

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.