Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Definición de derivada

De Wikillerato

(Diferencias entre revisiones)
Línea 53: Línea 53:
\, a \,
\, a \,
\right)
\right)
-
</math>
+
</math>.
 +
 
 +
<br/>
 +
 
 +
<center>
 +
<math>
 +
\mathrm{f}^\prime
 +
\left(
 +
\, a \,
 +
\right)
 +
= \lim_{h \to 0} \frac{\mathrm{f}\left( \, a \, + \, h \, \right) \, - \,
 +
\mathrm{f} \left( \, a \, \right)}{h}
 +
</math>.
 +
</center>
<br/>
<br/>

Revisión de 10:20 2 ene 2011

La derivada de la función   
\mathrm{f}
  en el punto   
x \, = \, a
, si existe, es el valor del limite:



\lim_{h \to 0} \frac{\mathrm{f}\left( \, a \, + \, h \, \right) \, - \,
</p>
<pre> \mathrm{f} \left( \, a \, \right)}{h}
</pre>
<p>.


Si este limite es un número real, la función   
\mathrm{f}
  es derivable en   
x \, = \, a
. Si el límite anterior no es un número real o el límite no existe, la función   
\mathrm{f}
  no es derivable en   
x = a
.


La derivada de la función 
\mathrm{f}
en   
x = a
  se denota por   
\mathrm{f}^\prime
\left(
</p>
<pre> \, a \,
</pre>
<p>\right)
.



\mathrm{f}^\prime
\left(
</p>
<pre> \, a \,
</pre>
<p>\right)
= \lim_{h \to 0} \frac{\mathrm{f}\left( \, a \, + \, h \, \right) \, - \,
</p>
<pre> \mathrm{f} \left( \, a \, \right)}{h}
</pre>
<p>.


Ejemplo


Calculemos la derivada de   
\mathrm{f}
\left(
</p>
<pre> \, x \,
</pre>
<p>\right)
\, = \, x^2 
  en   
x \, = \, 2
:



\mathrm{f}^\prime
\left(
</p>
<pre>  \, 2 \,
</pre>
<p>\right)
\, = \, \lim_{h \to 0} \frac{\mathrm{f}\left( \, 2 \, + \, h \, \right) \, - \,
</p>
<pre> \mathrm{f} \left( \, 2 \, \right)}{h} \, = \, \lim_{h \to 0} \frac
</pre>
<p>{\left( \, 2 \, + \, h \, \right)^2 \, - \, 2^2}{h} \, = \,



\, = \, \lim_{h \to 0}
\frac {\left( \, 4 \, + \, 4h \, + \, h^2 \, \right) \, - \, 4}{h} \, = \,
\lim_{h \to 0} \frac {4h \, + \, h^2}{h} \, = \, \lim_{h \to 0}
\left(
</p>
<pre>  \, h \, + 4 \, \,
\right)
\, = \, 4
</pre>
<p>


   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.