Lógica de clases
De Wikillerato
(→El silogismo y los diagramas de Euler-Venn) |
(→El silogismo y los diagramas de Euler-Venn) |
||
Línea 375: | Línea 375: | ||
<table cellspacing="8" width="85%"> | <table cellspacing="8" width="85%"> | ||
<tr> | <tr> | ||
- | <td align="center">A</td><td align="center">Universal afirmativa</td><td align="center">Todos los <math>S</math> Son <math>P</math></td><td align="center">Todos los hombres son mortales</td> | + | <td align="center">'''A'''</td><td align="center">Universal afirmativa</td><td align="center">Todos los <math>S</math> Son <math>P</math></td><td align="center">Todos los hombres son mortales</td> |
</tr> | </tr> | ||
- | <tr | + | <tr> |
- | <td align="center">E</td><td align="center">Universal negativa</td><td align="center">Ningún <math>S</math> es <math>P</math></td><td align="center">Ningún hombre es mortal</td> | + | <td align="center">'''E'''</td><td align="center">Universal negativa</td><td align="center">Ningún <math>S</math> es <math>P</math></td><td align="center">Ningún hombre es mortal</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td align="center">I</td><td align="center">Particular afirmativa</td><td align="center">Algún <math>S</math> es <math>P</math></td><td align="center">Algún hombre es mortal</td> | + | <td align="center">'''I'''</td><td align="center">Particular afirmativa</td><td align="center">Algún <math>S</math> es <math>P</math></td><td align="center">Algún hombre es mortal</td> |
</tr> | </tr> | ||
- | <tr | + | <tr> |
- | <td align="center">O</td><td align="center">Particular negativa</td><td align="center">Algún <math>S</math> no es <math>P</math></td><td align="center">Algún hombre no es mortal</td> | + | <td align="center">'''O'''</td><td align="center">Particular negativa</td><td align="center">Algún <math>S</math> no es <math>P</math></td><td align="center">Algún hombre no es mortal</td> |
</tr> | </tr> | ||
</table> | </table> | ||
Línea 391: | Línea 391: | ||
lenguaje de la lógica de clases: | lenguaje de la lógica de clases: | ||
- | (A) Universal afirmativa, "Todos los <math>S</math> son <math>P</math>" | + | (A) '''Universal afirmativa''', "Todos los <math>S</math> son <math>P</math>" |
- | <math>[S\subset P]</math>, es decir que la clase de los <math>S</math> que no está incluida en <math>P</math> es una clase vacía. | + | <math> [ S\subset P] \,</math>, es decir que la clase de los <math>S</math> que no está incluida en <math>P</math> es una clase vacía. |
En los diagramas, la clase vacía se simboliza mediante un coloreado gris, según | En los diagramas, la clase vacía se simboliza mediante un coloreado gris, según | ||
se observa: | se observa: | ||
+ | [[Imagen:Universal_afirmativa.gif]] | ||
- | (E) Universal negativa, "Ningún <math>S</math> es <math>P</math>", quiere decir que la clase | + | (E) '''Universal negativa''', "Ningún <math>S</math> es <math>P</math>", quiere decir que la clase |
constituida por los elementos comunes a la clase <math>S</math> y a la clase <math>P</math>, el producto | constituida por los elementos comunes a la clase <math>S</math> y a la clase <math>P</math>, el producto | ||
lógico entre ambos es una clase vacía, que se simboliza por un coloreado gris: | lógico entre ambos es una clase vacía, que se simboliza por un coloreado gris: | ||
<math>S\cap P = \varnothing</math> | <math>S\cap P = \varnothing</math> | ||
- | (I) Particular positiva, "Algún <math>S</math> es <math>P</math>", quiere | + | [[Imagen:Universal_negativa.gif]] |
+ | |||
+ | (I) '''Particular positiva''', "Algún <math>S</math> es <math>P</math>", quiere | ||
decir que la clase formada por los elementos comunes a la clase <math>S</math> y a la clase | decir que la clase formada por los elementos comunes a la clase <math>S</math> y a la clase | ||
<math>P</math> no es vacía, su producto lógico no es una clase vacía. La clase no vacía se | <math>P</math> no es vacía, su producto lógico no es una clase vacía. La clase no vacía se | ||
simboliza con una cruz gris: | simboliza con una cruz gris: | ||
- | (O) Particular negativa, "Algún <math>S</math> no es <math>P</math>", afirma | + | [[Imagen:Particular_afirmativa.gif]] |
+ | |||
+ | (O) '''Particular negativa''', "Algún <math>S</math> no es <math>P</math>", afirma | ||
que la clase de los S que no pertenecen a P no es una clase vacía; por tanto también | que la clase de los S que no pertenecen a P no es una clase vacía; por tanto también | ||
- | se simboliza con una cruz en color gris. En el siguiente razonamiento: Todos los | + | se simboliza con una cruz en color gris: |
+ | |||
+ | [[Imagen:Particular_negativa.gif]] | ||
+ | |||
+ | |||
+ | En el siguiente razonamiento: Todos los | ||
felinos son animales. Los leones son felinos. Luego los leones son animales. | felinos son animales. Los leones son felinos. Luego los leones son animales. | ||
- | Simbolización: | + | '''Simbolización:''' |
<math>F</math> = felinos. | <math>F</math> = felinos. | ||
Línea 424: | Línea 434: | ||
<td align="center" valign="top"><math>F \subset A</math><br> | <td align="center" valign="top"><math>F \subset A</math><br> | ||
<math>L \subsetF</math><br> | <math>L \subsetF</math><br> | ||
- | math>\vdash F \subset A</math></td> | + | <math>\vdash F \subset A</math></td> |
<td>[[Imagen:Silogismo.gif]]</td> | <td>[[Imagen:Silogismo.gif]]</td> | ||
</tr> | </tr> | ||
</table> | </table> |
Revisión de 10:54 18 abr 2007
Clases
Se entiende por clase una pluralidad o conjunto de individuos que tienen una misma propiedad o propiedades. Según el diagrama de la introducción a la lógica, en la lógica proposicional, hemos estudiado las oraciones o juicios, las proposiciones y los razonamientos. En la lógica de clases, nos ocupamos de los conceptos que designan un grupo de objetos con las mismas propiedades o características. Estos grupos de objetos, son las clases.
En el lenguaje formal las clases se representan con letras mayúsculas empezando por la .
Elementos de una clase
Cada uno de los objetos integrantes de una clase, es un elemento o miembro de la clase. La relación existente entre un elemento y la clase de la que es miembro, se llama relación de pertenencia, el elemento pertenece a la clase, se simboliza: [ ]; este símbolo deriva de la palabra griega estí, que significa es. Por ejemplo Madrid pertenece a las capitales europeas. .
En general , quiere decir que es un elemento de . Cuando quiero expresar que un elemento no pertenece a una clase, utilizo el símbolo: . Por ejemplo México , quiere decir que México no pertenece a las capitales europeas.
Las clases se pueden definir por extensión y comprensión. Por extensión enumerando sus elementos; por comprensión expresando sus propiedades comunes. La comprensión expresa su definición en términos de idea o concepto, es decir el significado de la clase o del concepto. La extensión hace referencia a sus elementos o bien de forma total: o bien de forma parcial: .
Relaciones entre clases
1. Si todos los elementos de son también de , las clases son idénticas o iguales: .
2. En el caso de que ningún elemento de sea elemento de y viceversa, las clases son disjuntas: Por ejemplo la clase de los madrileños y la de los sevillanos: .
3. Si ambas clases tienen al menos un elemento en común, se expresa así: y también . El signo se llama cuantificador universal, quiere decir que hay al menos un elemento.
4. Todos los elementos de la clase son también de la clase , Pero no a la inversa. es una subclase de o está incluida en . . Por ejemplo: Los alumnos de primero de la Educación Secundaria Obligatoria y los alumnos de todo el Colegio.
5. Clase unitaria es la que sólo tiene un elemento. Ejemplo: Presidente o Presidenta del gobierno.
6. Clase vacía es la que no tiene ningún elemento. Se representa:
Operaciones con clases
Si tenemos varias clases, se puede establecer entre ellas varias operaciones semejantes a la lógica proposicional.
Suma Lógica
Ejemplo: Los gatos y los seres grises = Todos los gatos y todos los seres grises, elefantes, trajes etc.
Producto lógico
Son los elementos comunes entre ambas clases:
En el ejemplo anterior el producto lógico, son los gatos grises.
Diferencia lógica de clases
. Los elementos que pertenecen a A y no pertenecen a B.
Los gatos que no son grises:
Diferencia simétrica de clases
Los elementos que pertenecen a y que pertenecen a pero no a ambos:
Clase complementaria
Si establecemos la clase universal y otra , que es subclase de , la clase complementaria de , es la clase constituida por los elementos que pertenecen a y no pertenecen a :
Si tomamos como clase universal a los españoles y como clase , los habitantes de la comunidad de Madrid, la clase complementaria son todos los españoles que no viven en la comunidad de Madrid.
Leyes de la lógica de clases
Las más importantes son:
Idempotencia
Conmutativa
Asociativa
Distributiva
Identidad
Complementaridad
Doble Complementaridad
Leyes de Absorción
Leyes de Morgan
Las demostraciones de estas leyes se realizan por las tablas de pertenencia, semejantes a las tablas de verdad en la Lógica proposicional:
Puede verse el isomorfismo entre la suma lógica de clases y la disyunción de proposiciones, así como del producto lógico y la conjunción. La diferencia simétrica con la disyunción exclusiva y entre la clase complementaria y la negación
Identidad de clases y tablas de pertenencia
Podemos averiguar si dos clases son idénticas usando las tablas de pertenencia.
Ejemplos:
Queremos saber si son idénticas: y
Primero hallamos la tabla de pertenencia de la primera expresión:
Y ahora la segunda:
Las clases del ejemplo son idénticas, ya que tienen la misma tabla de pertenencia.
También podemos demostrar la identidad de dos clases recurriendo a un proceso de transformación basado en leyes lógicas:
Procedemos de la siguiente manera:
, por la ley de Morgan para el producto lógico.
, por la ley distributiva del producto lógico.
por la ley distributiva del producto lógico.
, por una ley de complementariedad.
, por una ley de identidad.
, por la ley conmutativa de la suma lógica.
, por la ley conmutativa del producto lógico.
Estas dos clases, son idénticas.
Representación gráfica de clases mediante los diagramas de Euler – Venn
Las clases se representan por un círculo:
Las clases disjuntas:
Clases distintas:
Inclusión:
Representación de operaciones
Suma lógica:
Producto lógico:
Diferencia lógica:
Diferencia simétrica:
Clase complementaria:
El silogismo en la lógica de clases
El silogismo es un razonamiento deductivo en el que partiendo de dos o más premisas, se llega a la conclusión que se deriva necesariamente de ellas. Fue formulado por primera vez por Aristóteles en su gran obra de Lógica a la que llamó Organon.
Todos los hombres son mortales. Sócrates es hombre. Luego Sócrates es mortal.
También puede haber silogismos inválidos, por ejemplo:
Todos los españoles son simpáticos. Ningún francés es español. Luego ningún francés es simpático.
Como se advierte, no hay conexión entre las premisas y la conclusión.
El silogismo y los diagramas de Euler-Venn
Las premisas que constituyen los silogismos pueden ser de cuatro tipos: (A) Universales afirmativas, (E) universales negativas, (I) particulares afirmativas y (O) particulares negativas:
A | Universal afirmativa | Todos los Son | Todos los hombres son mortales |
E | Universal negativa | Ningún es | Ningún hombre es mortal |
I | Particular afirmativa | Algún es | Algún hombre es mortal |
O | Particular negativa | Algún no es | Algún hombre no es mortal |
Para representar estas proposiciones en diagramas, es necesario traducirlas al lenguaje de la lógica de clases:
(A) Universal afirmativa, "Todos los son " , es decir que la clase de los que no está incluida en es una clase vacía. En los diagramas, la clase vacía se simboliza mediante un coloreado gris, según se observa:
(E) Universal negativa, "Ningún es ", quiere decir que la clase constituida por los elementos comunes a la clase y a la clase , el producto lógico entre ambos es una clase vacía, que se simboliza por un coloreado gris:
(I) Particular positiva, "Algún es ", quiere decir que la clase formada por los elementos comunes a la clase y a la clase no es vacía, su producto lógico no es una clase vacía. La clase no vacía se simboliza con una cruz gris:
Imagen:Particular afirmativa.gif
(O) Particular negativa, "Algún no es ", afirma que la clase de los S que no pertenecen a P no es una clase vacía; por tanto también se simboliza con una cruz en color gris:
En el siguiente razonamiento: Todos los
felinos son animales. Los leones son felinos. Luego los leones son animales.
Simbolización:
= felinos.
= animales.
= leones.
|