Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Lógica de clases

De Wikillerato

(Diferencias entre revisiones)
(El silogismo y los diagramas de Euler-Venn)
(El silogismo y los diagramas de Euler-Venn)
Línea 375: Línea 375:
<table cellspacing="8" width="85%">
<table cellspacing="8" width="85%">
<tr>
<tr>
-
<td align="center">A</td><td align="center">Universal afirmativa</td><td align="center">Todos los <math>S</math> Son <math>P</math></td><td align="center">Todos los hombres son mortales</td>
+
<td align="center">'''A'''</td><td align="center">Universal afirmativa</td><td align="center">Todos los <math>S</math> Son <math>P</math></td><td align="center">Todos los hombres son mortales</td>
</tr>
</tr>
-
<tr bgcolor="#f0f0f0">
+
<tr>
-
<td align="center">E</td><td align="center">Universal negativa</td><td align="center">Ningún <math>S</math> es <math>P</math></td><td align="center">Ningún hombre es mortal</td>
+
<td align="center">'''E'''</td><td align="center">Universal negativa</td><td align="center">Ningún <math>S</math> es <math>P</math></td><td align="center">Ningún hombre es mortal</td>
</tr>
</tr>
<tr>
<tr>
-
<td align="center">I</td><td align="center">Particular afirmativa</td><td align="center">Algún <math>S</math> es <math>P</math></td><td align="center">Algún hombre es mortal</td>
+
<td align="center">'''I'''</td><td align="center">Particular afirmativa</td><td align="center">Algún <math>S</math> es <math>P</math></td><td align="center">Algún hombre es mortal</td>
</tr>
</tr>
-
<tr bgcolor="#f0f0f0">>
+
<tr>
-
<td align="center">O</td><td align="center">Particular negativa</td><td align="center">Algún <math>S</math> no es <math>P</math></td><td align="center">Algún hombre no es mortal</td>
+
<td align="center">'''O'''</td><td align="center">Particular negativa</td><td align="center">Algún <math>S</math> no es <math>P</math></td><td align="center">Algún hombre no es mortal</td>
</tr>
</tr>
</table>
</table>
Línea 391: Línea 391:
lenguaje de la lógica de clases:
lenguaje de la lógica de clases:
-
(A) Universal afirmativa, "Todos los <math>S</math> son <math>P</math>"
+
(A) '''Universal afirmativa''', "Todos los <math>S</math> son <math>P</math>"
-
<math>[S\subset P]</math>, es decir que la clase de los <math>S</math> que no está incluida en <math>P</math> es una clase vacía.
+
<math> [ S\subset P] \,</math>, es decir que la clase de los <math>S</math> que no está incluida en <math>P</math> es una clase vacía.
En los diagramas, la clase vacía se simboliza mediante un coloreado gris, según
En los diagramas, la clase vacía se simboliza mediante un coloreado gris, según
se observa:
se observa:
 +
[[Imagen:Universal_afirmativa.gif]]
-
(E) Universal negativa, "Ningún <math>S</math> es <math>P</math>", quiere decir que la clase
+
(E) '''Universal negativa''', "Ningún <math>S</math> es <math>P</math>", quiere decir que la clase
constituida por los elementos comunes a la clase <math>S</math> y a la clase <math>P</math>, el producto
constituida por los elementos comunes a la clase <math>S</math> y a la clase <math>P</math>, el producto
lógico entre ambos es una clase vacía, que se simboliza por un coloreado gris:
lógico entre ambos es una clase vacía, que se simboliza por un coloreado gris:
<math>S\cap P = \varnothing</math>
<math>S\cap P = \varnothing</math>
-
(I) Particular positiva, "Algún <math>S</math> es <math>P</math>", quiere
+
[[Imagen:Universal_negativa.gif]]
 +
 
 +
(I) '''Particular positiva''', "Algún <math>S</math> es <math>P</math>", quiere
decir que la clase formada por los elementos comunes a la clase <math>S</math> y a la clase
decir que la clase formada por los elementos comunes a la clase <math>S</math> y a la clase
<math>P</math> no es vacía, su producto lógico no es una clase vacía. La clase no vacía se
<math>P</math> no es vacía, su producto lógico no es una clase vacía. La clase no vacía se
simboliza con una cruz gris:
simboliza con una cruz gris:
-
(O) Particular negativa, "Algún <math>S</math> no es <math>P</math>", afirma
+
[[Imagen:Particular_afirmativa.gif]]
 +
 
 +
(O) '''Particular negativa''', "Algún <math>S</math> no es <math>P</math>", afirma
que la clase de los S que no pertenecen a P no es una clase vacía; por tanto también
que la clase de los S que no pertenecen a P no es una clase vacía; por tanto también
-
se simboliza con una cruz en color gris. En el siguiente razonamiento: Todos los
+
se simboliza con una cruz en color gris:
 +
 
 +
[[Imagen:Particular_negativa.gif]]
 +
 
 +
 
 +
En el siguiente razonamiento: Todos los
felinos son animales. Los leones son felinos. Luego los leones son animales.
felinos son animales. Los leones son felinos. Luego los leones son animales.
-
Simbolización:
+
'''Simbolización:'''
<math>F</math> = felinos.
<math>F</math> = felinos.
Línea 424: Línea 434:
<td align="center" valign="top"><math>F \subset A</math><br>
<td align="center" valign="top"><math>F \subset A</math><br>
<math>L \subsetF</math><br>
<math>L \subsetF</math><br>
-
math>\vdash F \subset A</math></td>
+
<math>\vdash F \subset A</math></td>
<td>[[Imagen:Silogismo.gif]]</td>
<td>[[Imagen:Silogismo.gif]]</td>
</tr>
</tr>
</table>
</table>

Revisión de 10:54 18 abr 2007

Tabla de contenidos

Clases

Se entiende por clase una pluralidad o conjunto de individuos que tienen una misma propiedad o propiedades. Según el diagrama de la introducción a la lógica, en la lógica proposicional, hemos estudiado las oraciones o juicios, las proposiciones y los razonamientos. En la lógica de clases, nos ocupamos de los conceptos que designan un grupo de objetos con las mismas propiedades o características. Estos grupos de objetos, son las clases.

En el lenguaje formal las clases se representan con letras mayúsculas empezando por la A.

Elementos de una clase

Cada uno de los objetos integrantes de una clase, es un elemento o miembro de la clase. La relación existente entre un elemento y la clase de la que es miembro, se llama relación de pertenencia, el elemento pertenece a la clase, se simboliza: [ \in ]; este símbolo deriva de la palabra griega estí, que significa es. Por ejemplo Madrid pertenece a las capitales europeas. Madrid \in C.

En general x \in C, quiere decir que  x es un elemento de C. Cuando quiero expresar que un elemento no pertenece a una clase, utilizo el símbolo: \notin . Por ejemplo México  \notin  C, quiere decir que México no pertenece a las capitales europeas.

Las clases se pueden definir por extensión y comprensión. Por extensión enumerando sus elementos; por comprensión expresando sus propiedades comunes. La comprensión expresa su definición en términos de idea o concepto, es decir el significado de la clase o del concepto. La extensión hace referencia a sus elementos o bien de forma total: \forall x o bien de forma parcial: \exists x .

Relaciones entre clases

1. Si todos los elementos de A son también de B, las clases son idénticas o iguales:  A  =  B.

2. En el caso de que ningún elemento de A sea elemento de B y viceversa, las clases son disjuntas: Por ejemplo la clase de los madrileños y la de los sevillanos: A \mid B \,.

3. Si ambas clases tienen al menos un elemento en común, se expresa así: \exists x \in A \land \in B y también \exists x \in A \land x \in B\,\, . El signo \exists se llama cuantificador universal, quiere decir que hay al menos un elemento.

4. Todos los elementos de la clase A son también de la clase B, Pero no a la inversa. A es una subclase de B o está incluida en B. \, A \subset B. Por ejemplo: Los alumnos de primero de la Educación Secundaria Obligatoria y los alumnos de todo el Colegio.

5. Clase unitaria es la que sólo tiene un elemento. Ejemplo: Presidente o Presidenta del gobierno.

6. Clase vacía es la que no tiene ningún elemento. Se representa: \varnothing

Operaciones con clases

Si tenemos varias clases, se puede establecer entre ellas varias operaciones semejantes a la lógica proposicional.

Suma Lógica

A\cup B\, [ x \in A \lor x \in B ]

Ejemplo: Los gatos y los seres grises = Todos los gatos y todos los seres grises, elefantes, trajes etc.

Producto lógico

Son los elementos comunes entre ambas clases:

A\,\cap B\, [ x \in A \land x \in B ]

En el ejemplo anterior el producto lógico, son los gatos grises.

Diferencia lógica de clases

A  -  B. Los elementos que pertenecen a A y no pertenecen a B.

Los gatos que no son grises: A  -  B\,  [ x \in A \land x \notin B ]

Diferencia simétrica de clases

Los elementos que pertenecen a A y que pertenecen a B pero no a ambos:

 A \Delta B \, [ x \in A \,\underline{\lor} \, x \in B ]

Clase complementaria

Si establecemos la clase U universal y otra A, que es subclase de U, la clase complementaria de A, es la clase constituida por los elementos que pertenecen a U y no pertenecen a A:

\overline{A}\, [x\in U \land x\notin A]


Si tomamos como clase universal U a los españoles y como clase A, los habitantes de la comunidad de Madrid, la clase complementaria son todos los españoles que no viven en la comunidad de Madrid.


Leyes de la lógica de clases

Las más importantes son:

Idempotencia

A\cupA \Leftrightarrow A

A\capA \Leftrightarrow A

Conmutativa

A\cup B \Leftrightarrow B\cup A

A\cap B \Leftrightarrow B\cap A

Asociativa

A\cup (B \cup C)\Leftrightarrow (A\cup B) \cup C

A\cap (B \cap C)\Leftrightarrow (A\cap B) \cap C

Distributiva

A\cup (B \cap C)\Leftrightarrow (A\cup B) \cap (A \cup C)

A\cap (B \cup C)\Leftrightarrow (A\cap B) \cup (A \cap C)

Identidad

A\cup U \Leftrightarrow U

A\cap U \Leftrightarrow A

A\cup \varnothing \Leftrightarrow A

A\cap \varnothing \Leftrightarrow \varnothing

Complementaridad

A\cup \overline{A} \Leftrightarrow U

A\cap \overline{A} \Leftrightarrow \varnothing

\overline{U} \Leftrightarrow \varnothing

\overline{\varnothing} \Leftrightarrow U

Doble Complementaridad

\overline{\overline{A}} \Leftrightarrow A

Leyes de Absorción

A\cup (A \cap B)\Leftrightarrow A

A\cap (A \cup B)\Leftrightarrow A

Leyes de Morgan

\overline{A \cup B} \Leftrightarrow \overline{A} \cap \overline{B}

\overline{A \cap B} \Leftrightarrow \overline{A} \cup \overline{B}

Las demostraciones de estas leyes se realizan por las tablas de pertenencia, semejantes a las tablas de verdad en la Lógica proposicional:

  A\, B   A \cupB   A \cap B   A - B   A \Delta B   A   \overline{A}
\in \, \in \in \in \notin \notin \in \notin
\in \, \notin \in \notin \in \in \notin \in
\notin \, \in \in \notin \in \in
\notin \, \notin \notin \notin \in \notin

Puede verse el isomorfismo entre la suma lógica de clases y la disyunción de proposiciones, así como del producto lógico y la conjunción. La diferencia simétrica con la disyunción exclusiva y entre la clase complementaria y la negación

Identidad de clases y tablas de pertenencia

Podemos averiguar si dos clases son idénticas usando las tablas de pertenencia.

Ejemplos:

Queremos saber si son idénticas: A \cup (\overline{A}\cup B) y \overline{\overline{A}\cup \overline{B}}

Primero hallamos la tabla de pertenencia de la primera expresión:

 A\, B  \overline{A}  \overline{A} \cup B  A \cup (\overline{A}\cup B)
\in \, \in \notin \notin \in
\in \, \notin \notin \notin \in
\notin \, \in \in \in \in
\notin \, \notin \in \notin \notin

Y ahora la segunda:

 A\, B  \overline{A}  \overline{B}  \overline{A}\cap \overline{B}  \overline{\overline{A}\cup \overline{B} }
\in \, \in \notin \notin \notin \in
\in \, \notin \notin \in \notin \in
\notin \, \in \in \notin \notin \in
\notin \, \notin \notin \in \in \notin

Las clases del ejemplo son idénticas, ya que tienen la misma tabla de pertenencia.

También podemos demostrar la identidad de dos clases recurriendo a un proceso de transformación basado en leyes lógicas:

  (A \cup B) \cap (\overline{A \cap B}) \Leftrightarrow  (A \cap \overline{B}) \cup (\overline{A} \cap B)

Procedemos de la siguiente manera:

  (A \cup B) \cap (\overline{A \cap B}) \Leftrightarrow  (A \cup B) \cap (\overline{A} \cup \overline{B}) , por la ley de Morgan para el producto lógico.

(A \cup B) \cap (\overline{A} \cup \overline{B})\Leftrightarrow[(A \cup B)\cap \overline{A} ] \cup [(A \cup B)\cap \overline{B}], por la ley distributiva del producto lógico.

[(A \cup B)\cap \overline{A} ] \cup [(A \cup B)\cap \overline{B}]\Leftrightarrow [(A \cap \overline{A})\cup (B \cap \overline{A})]
\cup [(A \cap \overline{B})\cup (B \cap \overline{B})] por la ley distributiva del producto lógico.

 [(A \cap \overline{A})\cup (B \cap \overline{A})]\cup [(A \cap \overline{B})\cup (B \cap \overline{B})]\Leftrightarrow
[\varnothing \cup (B \cap \overline{A})] \cup [A \cap \overline{B})\cup \varnothing], por una ley de complementariedad.

[\varnothing \cup (B \cap \overline{A})] \cup [A \cap \overline{B})\cup \varnothing]\Leftrightarrow (B \cap \overline{A})\cup(A \cap \overline{B}), por una ley de identidad.

(B \cap \overline{A})\cup(A \cap \overline{B})\Leftrightarrow (A \cap \overline{B})\cup (B \cap \overline{A}), por la ley conmutativa de la suma lógica.

(A \cap \overline{B})\cup (B \cap \overline{A})\Leftrightarrow (A \cap \overline{B})\cup (A \cap \overline{B}), por la ley conmutativa del producto lógico.

Estas dos clases, son idénticas.


Representación gráfica de clases mediante los diagramas de Euler – Venn

Las clases se representan por un círculo:

Imagen:Clase.gif

Las clases disjuntas:

Imagen:Clases_disjuntas.gif

Clases distintas:

Imagen:Clases_distintas.gif

Inclusión:

Imagen:Inclusion_de_clases.gif


Representación de operaciones

Suma lógica: A\cup B

Imagen:Suma_logica.gif

Producto lógico:  A\cap B

Imagen:Producto_logico.gif

Diferencia lógica:  A - B

Imagen:Diferencia_logica.gif


Diferencia simétrica:  A\Delta B

Imagen:Diferencia_simetrica.gif


Clase complementaria: \overline A

Imagen:Clase_complementaria.gif


El silogismo en la lógica de clases

El silogismo es un razonamiento deductivo en el que partiendo de dos o más premisas, se llega a la conclusión que se deriva necesariamente de ellas. Fue formulado por primera vez por Aristóteles en su gran obra de Lógica a la que llamó Organon.

Todos los hombres son mortales.
Sócrates es hombre.
Luego Sócrates es mortal.

También puede haber silogismos inválidos, por ejemplo:

Todos los españoles son simpáticos.
Ningún francés es español.
Luego ningún francés es simpático.

Como se advierte, no hay conexión entre las premisas y la conclusión.


El silogismo y los diagramas de Euler-Venn

Las premisas que constituyen los silogismos pueden ser de cuatro tipos: (A) Universales afirmativas, (E) universales negativas, (I) particulares afirmativas y (O) particulares negativas:

AUniversal afirmativaTodos los S Son PTodos los hombres son mortales
EUniversal negativaNingún S es PNingún hombre es mortal
IParticular afirmativaAlgún S es PAlgún hombre es mortal
OParticular negativaAlgún S no es PAlgún hombre no es mortal

Para representar estas proposiciones en diagramas, es necesario traducirlas al lenguaje de la lógica de clases:

(A) Universal afirmativa, "Todos los S son P"  [ S\subset P] \,, es decir que la clase de los S que no está incluida en P es una clase vacía. En los diagramas, la clase vacía se simboliza mediante un coloreado gris, según se observa:

Imagen:Universal_afirmativa.gif

(E) Universal negativa, "Ningún S es P", quiere decir que la clase constituida por los elementos comunes a la clase S y a la clase P, el producto lógico entre ambos es una clase vacía, que se simboliza por un coloreado gris: S\cap P = \varnothing

Imagen:Universal_negativa.gif

(I) Particular positiva, "Algún S es P", quiere decir que la clase formada por los elementos comunes a la clase S y a la clase P no es vacía, su producto lógico no es una clase vacía. La clase no vacía se simboliza con una cruz gris:

Imagen:Particular afirmativa.gif

(O) Particular negativa, "Algún S no es P", afirma que la clase de los S que no pertenecen a P no es una clase vacía; por tanto también se simboliza con una cruz en color gris:

Imagen:Particular_negativa.gif


En el siguiente razonamiento: Todos los felinos son animales. Los leones son felinos. Luego los leones son animales.

Simbolización:

F = felinos.

A = animales.

L = leones.

F \subset A

L \subsetF

\vdash F \subset A
Imagen:Silogismo.gif
   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.