Primitiva de una función
De Wikillerato
Línea 192: | Línea 192: | ||
</math> | </math> | ||
</center> | </center> | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | Observese que la diferencia | ||
+ | <math> | ||
+ | \mathrm{G} \left( \, x \, \right) \, - \, | ||
+ | \mathrm{F}^\prime \left( \, x \, \right) | ||
+ | </math> | ||
+ | es una constante. | ||
<br/> | <br/> | ||
[[Category: Matemáticas]] | [[Category: Matemáticas]] |
Revisión de 15:51 10 mar 2008
Tabla de contenidos[ocultar] |
Definición
Dadas dos funciones
y
, definidas en un intervalo
, diremos que
es una función primitiva de
si la derivada de
es la función
en el intervalo
.
es primitiva de
en
[Unparseable or potentially dangerous latex formula. Error 3 ]
Calcular la primitiva de una función es el proceso inverso al de calcular su derivada.
Ejemplo
Consideremos la función
y denotemos por
la derivada de
, es decir:
Entonces una primitiva de
es
.
¿Cuantas primitivas puede tener una función?
Una función cualquiera admite infinitas primitivas, de hecho
Dos funciones son primitivas de una misma función si y solo si se diferencian solo en una constante aditiva.
Es decir, si
y
son primitivas de
, entonces existe un número real
, tal que
Reciprocamente, si a una primitiva de una fución
le añadimos una constante
, entonces obtenemos otra primitiva de
.
Ejemplo
y
son dos funciones primitivas de
[Unparseable or potentially dangerous latex formula. Error 3 ]
, ya que
Observese que la diferencia [Unparseable or potentially dangerous latex formula. Error 3 ] es una constante.
