Patrocinado por PHPDocX

Síguenos en Twitter

Buscar en WikilleratO
   

Indeterminaciones

De Wikillerato

(Diferencias entre revisiones)
Línea 1: Línea 1:
-
%% {{{ =indeterminaciones
 
==Introducción==
==Introducción==
Línea 353: Línea 352:
[[Categoría:Matemáticas]]
[[Categoría:Matemáticas]]
-
 
-
%% }}}
 

Revisión de 16:45 25 ago 2010

Tabla de contenidos

Introducción


Muchas de las funciones que se ven en bachillerato son continuas en toda la recta real o en casi todos los puntos de su dominio.


Este es el caso de los polinomios, las funciones exponenciales   
\left( \, a^x, \, a > 0 \right)
  , el coseno, el seno, etc.


Si una función 
\mathrm{f}
es continua en   
x_0 \in \mathbb{R}
,   el limite de 
\mathrm{f}
cuando 
x
tiende a   
x_0 
  se puede calcular simplemente evaluando 
\mathrm{f}
en   
x_0
.


Ejemplo


Como   
\mathrm{f}\left( \, x \, \right) = x^2
  es una función continua en todo 
\mathbb{R}
se tiene que


\lim_{x \to  5} \mathrm{f} \left( \,  x \, \right)  = \mathrm{f} \left( \,  5 \,
\right) = 25


Indeterminación del tipo 0/0


En muchos casos, el limite se calcula utilizando las propiedades de los limites.



Por ejemplo, si existen los limites


\lim_{x \to x_0} \mathrm{g} \left( \, x_0 \, \right), \,
\lim_{x \to x_0} \mathrm{f} \left( \, x_0 \, \right)

y


\lim_{x \to x_0} \mathrm{g} \left( \, x_0 \, \right) \neq 0

entonces se puede calcular el límite


\lim_{x \to x_0} \frac{\mathrm{f} \left(  \, x \, \right)}{\mathrm{g}\left( \, x
</p>
<pre>   \, \right)} 
</pre>
<p>

dividiendo   
</p>
<pre>\lim_{x \to x_0} \mathrm{f}\left( \, x \, \right) 
</pre>
<p>   entre   
\lim_{x \to x_0} \mathrm{g}\left( \, x \, \right)}
:


\lim_{x \to x_0} \frac{\mathrm{f} \left(  \, x \, \right)}{\mathrm{g}\left( \, x
</p>
<pre>   \, \right)} = \frac{\lim_{x \to x_0} \mathrm{f}\left( \, x \,
 \right)}{\lim_{x \to x_0} \mathrm{g}\left( \, x \, \right)}
</pre>
<p>

¿Pero que sucede cuando 
\lim_{x \to x_0} \mathrm{g} \left( \, x \, \right) = 0
?


Pueden darse dos casos:


  1. 1.    \lim_{x \to x_0} \mathrm{f} \left( \, x \, \right) \neq 0 ,   o bien


  1. 2.    \lim_{x \to x_0} \mathrm{f} \left( \, x \, \right) = 0 .


En este último caso, de existir el limite


\lim_{x \to x_0} \frac{\mathrm{f} \left( \, x \, \right)}{\mathrm{g}\left( \, x \, \right)}

se ha de calcular de otra manera.


Procedimiento 1


Si 
\mathrm{f}
y 
\mathrm{g}
son polinomios, entonces se puede dividir ambos por   
x - x_0
, cuantas veces sea posible.


Ejemplo


Calculemos el limite


\lim_{x \to 1} \frac{\mathrm{f} \left( \, x \, \right)}{\mathrm{g}\left( \, x \, \right)}

con


\left\{
</p>
<pre> \begin{array}{l}
   \mathrm{f} \left( \, x \, \right) = x^3 - x^2 - x + 1
   \\
   \mathrm{g} \left( \, x \, \right) = x^3 - 3x + 2
 \end{array}
</pre>
<p>\right.

Ambos polinomios, 
\mathrm{f}
y 
\mathrm{g}
, se anulan en   
x = 1
,   por lo tanto ambos son divisibles por   
x - 1
.


Si dividimos 
\mathrm{f}
y 
\mathrm{g}
por   
x - 1
  una vez y luego otra, nos queda que

[Unparseable or potentially dangerous latex formula. Error 3 ]

Todas esas divisiones se puede hacer por la regla de Ruffini.


Procedimiento 2


Independientemente de como sean 
\mathrm{f}
y 
\mathrm{g}
se puede utilizar la regla de L'Hôpital:


Si existe


\lim_{x \to x_0} \frac{\mathrm{f}^\prime    \left(     \,     x    \,
</p>
<pre> \right)}{\mathrm{g}^\prime \left( \, x \, \right)}
</pre>
<p>

ya sea   
x_0
  real, infinito o menos infinito, entonces


\lim_{x \to x_0} \frac{\mathrm{f} \left( \, x \, \right)}{\mathrm{g} \left( \, x \, \right)} =
\lim_{x     \to    x_0}     \frac{\mathrm{f}^\prime    \left(     \,     x    \,
</p>
<pre> \right)}{\mathrm{g}^\prime \left( \, x \, \right)} 
</pre>
<p>

donde   
\mathrm{f}^\prime 
  y   
\mathrm{g}^\prime 
  son las derivadas de 
\mathrm{f}
y 
\mathrm{g}
.


Ejemplo


Calculemos


\lim_{x \to 0} \frac{\mathrm{sen} \left( \, x \, \right)}{x}

Como la funcion seno y la funcion identidad   
\left( \, \mathrm{f} \left( \, x \, \right) = x \, \right)
  son funciones continuas, lo primero que hacemos es sustituir   
x
  por cero en


\frac{\mathrm{sen} \left( \, x \, \right)}{x}

con lo que obtenemos la indeterminación   
\frac{0}{0}
.


Esto NO significa que el limite NO exista, de hecho si derivamos el numerador y el denominador en   
\frac{\mathrm{sen} \left( \, x \, \right)}{x}
  obtenemos   
\frac{\cos \left( \, x \, \right)}{1}
  que cuando 
x
tiende a 
0
tiende a 1.


Por lo tanto, por la regla de L'Hôpital


\lim_{x \to 0} \frac{\mathrm{sen} \left( \, x \, \right)}{x} =
\lim_{x \to 0} \frac{\cos \left( \, x \, \right)}{1} = 1

El ultimo límite se calcula teniendo en cuenta que la función coseno es continua


\lim_{x \to 0} \frac{\cos \left( \, x \, \right)}{1} =
\frac{\cos \left( \, 0 \, \right)}{1} = 1

   
 
ASIGNATURAS
MatemáticasFísicaQuímicaBiologíaDibujoHistoriaLengua y LiteraturaHistoria del ArteFilosofía
Creative Commons License
Los contenidos de Wikillerato están disponibles bajo una licencia de Creative Commons.
Pueden utilizarse y redistribuirse libremente siempre que se reconozca su procedencia.